L(s) = 1 | − 8·4-s − 18·5-s + 64·16-s + 144·20-s + 108·23-s + 199·25-s + 340·31-s − 434·37-s + 36·47-s − 343·49-s + 738·53-s + 720·59-s − 512·64-s − 416·67-s − 612·71-s − 1.15e3·80-s − 1.67e3·89-s − 864·92-s − 34·97-s − 1.59e3·100-s + 1.17e3·103-s − 2.14e3·113-s − 1.94e3·115-s + ⋯ |
L(s) = 1 | − 4-s − 1.60·5-s + 16-s + 1.60·20-s + 0.979·23-s + 1.59·25-s + 1.96·31-s − 1.92·37-s + 0.111·47-s − 49-s + 1.91·53-s + 1.58·59-s − 64-s − 0.758·67-s − 1.02·71-s − 1.60·80-s − 1.99·89-s − 0.979·92-s − 0.0355·97-s − 1.59·100-s + 1.12·103-s − 1.78·113-s − 1.57·115-s + ⋯ |
Λ(s)=(=(1089s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1089s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1+p3T2 |
| 5 | 1+18T+p3T2 |
| 7 | 1+p3T2 |
| 13 | 1+p3T2 |
| 17 | 1+p3T2 |
| 19 | 1+p3T2 |
| 23 | 1−108T+p3T2 |
| 29 | 1+p3T2 |
| 31 | 1−340T+p3T2 |
| 37 | 1+434T+p3T2 |
| 41 | 1+p3T2 |
| 43 | 1+p3T2 |
| 47 | 1−36T+p3T2 |
| 53 | 1−738T+p3T2 |
| 59 | 1−720T+p3T2 |
| 61 | 1+p3T2 |
| 67 | 1+416T+p3T2 |
| 71 | 1+612T+p3T2 |
| 73 | 1+p3T2 |
| 79 | 1+p3T2 |
| 83 | 1+p3T2 |
| 89 | 1+1674T+p3T2 |
| 97 | 1+34T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.736785677830695573996941291180, −8.446377138974293221095131063340, −7.53715153686217732863227816235, −6.75574963478171206685547455048, −5.37322498552637436041865688150, −4.56837298844257880324597562311, −3.85429552969987359634357864643, −2.98709261059238423344664646162, −1.00767604415401823796887979437, 0,
1.00767604415401823796887979437, 2.98709261059238423344664646162, 3.85429552969987359634357864643, 4.56837298844257880324597562311, 5.37322498552637436041865688150, 6.75574963478171206685547455048, 7.53715153686217732863227816235, 8.446377138974293221095131063340, 8.736785677830695573996941291180