Properties

Label 2-33e2-1.1-c5-0-104
Degree 22
Conductor 10891089
Sign 11
Analytic cond. 174.657174.657
Root an. cond. 13.215813.2158
Motivic weight 55
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·2-s + 49·4-s − 24·5-s + 72·7-s + 153·8-s − 216·10-s + 306·13-s + 648·14-s − 191·16-s − 1.20e3·17-s − 774·19-s − 1.17e3·20-s + 4.62e3·23-s − 2.54e3·25-s + 2.75e3·26-s + 3.52e3·28-s + 7.68e3·29-s + 5.42e3·31-s − 6.61e3·32-s − 1.08e4·34-s − 1.72e3·35-s + 3.45e3·37-s − 6.96e3·38-s − 3.67e3·40-s − 7.86e3·41-s + 1.57e4·43-s + 4.16e4·46-s + ⋯
L(s)  = 1  + 1.59·2-s + 1.53·4-s − 0.429·5-s + 0.555·7-s + 0.845·8-s − 0.683·10-s + 0.502·13-s + 0.883·14-s − 0.186·16-s − 1.01·17-s − 0.491·19-s − 0.657·20-s + 1.82·23-s − 0.815·25-s + 0.798·26-s + 0.850·28-s + 1.69·29-s + 1.01·31-s − 1.14·32-s − 1.61·34-s − 0.238·35-s + 0.414·37-s − 0.782·38-s − 0.362·40-s − 0.730·41-s + 1.30·43-s + 2.90·46-s + ⋯

Functional equation

Λ(s)=(1089s/2ΓC(s)L(s)=(Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}
Λ(s)=(1089s/2ΓC(s+5/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 10891089    =    321123^{2} \cdot 11^{2}
Sign: 11
Analytic conductor: 174.657174.657
Root analytic conductor: 13.215813.2158
Motivic weight: 55
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 1089, ( :5/2), 1)(2,\ 1089,\ (\ :5/2),\ 1)

Particular Values

L(3)L(3) \approx 6.0985752356.098575235
L(12)L(\frac12) \approx 6.0985752356.098575235
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
11 1 1
good2 19T+p5T2 1 - 9 T + p^{5} T^{2}
5 1+24T+p5T2 1 + 24 T + p^{5} T^{2}
7 172T+p5T2 1 - 72 T + p^{5} T^{2}
13 1306T+p5T2 1 - 306 T + p^{5} T^{2}
17 1+1206T+p5T2 1 + 1206 T + p^{5} T^{2}
19 1+774T+p5T2 1 + 774 T + p^{5} T^{2}
23 14626T+p5T2 1 - 4626 T + p^{5} T^{2}
29 17686T+p5T2 1 - 7686 T + p^{5} T^{2}
31 15428T+p5T2 1 - 5428 T + p^{5} T^{2}
37 13454T+p5T2 1 - 3454 T + p^{5} T^{2}
41 1+7866T+p5T2 1 + 7866 T + p^{5} T^{2}
43 115786T+p5T2 1 - 15786 T + p^{5} T^{2}
47 16402T+p5T2 1 - 6402 T + p^{5} T^{2}
53 121684T+p5T2 1 - 21684 T + p^{5} T^{2}
59 127420T+p5T2 1 - 27420 T + p^{5} T^{2}
61 152866T+p5T2 1 - 52866 T + p^{5} T^{2}
67 125012T+p5T2 1 - 25012 T + p^{5} T^{2}
71 1+65058T+p5T2 1 + 65058 T + p^{5} T^{2}
73 1+26676T+p5T2 1 + 26676 T + p^{5} T^{2}
79 1+18612T+p5T2 1 + 18612 T + p^{5} T^{2}
83 1+p5T2 1 + p^{5} T^{2}
89 141670T+p5T2 1 - 41670 T + p^{5} T^{2}
97 140694T+p5T2 1 - 40694 T + p^{5} T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.922846712735330427629237430134, −8.284557773122472605845388302467, −7.09271197197928551945852242094, −6.49381936881124855525513382433, −5.53689559961804616720279564341, −4.63130217811030052396482728389, −4.16181903747777818072799957629, −3.07378063749227953609079328709, −2.22569031009299844403830233043, −0.832662833210570855000195893043, 0.832662833210570855000195893043, 2.22569031009299844403830233043, 3.07378063749227953609079328709, 4.16181903747777818072799957629, 4.63130217811030052396482728389, 5.53689559961804616720279564341, 6.49381936881124855525513382433, 7.09271197197928551945852242094, 8.284557773122472605845388302467, 8.922846712735330427629237430134

Graph of the ZZ-function along the critical line