L(s) = 1 | − 9·2-s + 49·4-s − 24·5-s − 72·7-s − 153·8-s + 216·10-s − 306·13-s + 648·14-s − 191·16-s + 1.20e3·17-s + 774·19-s − 1.17e3·20-s + 4.62e3·23-s − 2.54e3·25-s + 2.75e3·26-s − 3.52e3·28-s − 7.68e3·29-s + 5.42e3·31-s + 6.61e3·32-s − 1.08e4·34-s + 1.72e3·35-s + 3.45e3·37-s − 6.96e3·38-s + 3.67e3·40-s + 7.86e3·41-s − 1.57e4·43-s − 4.16e4·46-s + ⋯ |
L(s) = 1 | − 1.59·2-s + 1.53·4-s − 0.429·5-s − 0.555·7-s − 0.845·8-s + 0.683·10-s − 0.502·13-s + 0.883·14-s − 0.186·16-s + 1.01·17-s + 0.491·19-s − 0.657·20-s + 1.82·23-s − 0.815·25-s + 0.798·26-s − 0.850·28-s − 1.69·29-s + 1.01·31-s + 1.14·32-s − 1.61·34-s + 0.238·35-s + 0.414·37-s − 0.782·38-s + 0.362·40-s + 0.730·41-s − 1.30·43-s − 2.90·46-s + ⋯ |
Λ(s)=(=(1089s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(1089s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
0.6273013798 |
L(21) |
≈ |
0.6273013798 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1+9T+p5T2 |
| 5 | 1+24T+p5T2 |
| 7 | 1+72T+p5T2 |
| 13 | 1+306T+p5T2 |
| 17 | 1−1206T+p5T2 |
| 19 | 1−774T+p5T2 |
| 23 | 1−4626T+p5T2 |
| 29 | 1+7686T+p5T2 |
| 31 | 1−5428T+p5T2 |
| 37 | 1−3454T+p5T2 |
| 41 | 1−7866T+p5T2 |
| 43 | 1+15786T+p5T2 |
| 47 | 1−6402T+p5T2 |
| 53 | 1−21684T+p5T2 |
| 59 | 1−27420T+p5T2 |
| 61 | 1+52866T+p5T2 |
| 67 | 1−25012T+p5T2 |
| 71 | 1+65058T+p5T2 |
| 73 | 1−26676T+p5T2 |
| 79 | 1−18612T+p5T2 |
| 83 | 1+p5T2 |
| 89 | 1−41670T+p5T2 |
| 97 | 1−40694T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.289833229140719624289387716241, −8.372487584723894477886109250807, −7.53886410345486398164154002407, −7.14240269828144831204748173683, −6.04578073254428847950718010378, −4.92751451389878745695036803798, −3.58339286367221452245573353103, −2.61704080710370944423389283394, −1.36936672929772883105169912397, −0.46906297954454757541592899878,
0.46906297954454757541592899878, 1.36936672929772883105169912397, 2.61704080710370944423389283394, 3.58339286367221452245573353103, 4.92751451389878745695036803798, 6.04578073254428847950718010378, 7.14240269828144831204748173683, 7.53886410345486398164154002407, 8.372487584723894477886109250807, 9.289833229140719624289387716241