L(s) = 1 | + (−0.809 + 0.587i)4-s + (0.831 + 1.14i)7-s + (−1.34 + 0.437i)13-s + (0.309 − 0.951i)16-s + (−0.831 + 1.14i)19-s + (0.809 + 0.587i)25-s + (−1.34 − 0.437i)28-s + 1.41i·43-s + (−0.309 + 0.951i)49-s + (0.831 − 1.14i)52-s + (1.34 + 0.437i)61-s + (0.309 + 0.951i)64-s + (−0.831 − 1.14i)73-s − 1.41i·76-s + (1.34 − 0.437i)79-s + ⋯ |
L(s) = 1 | + (−0.809 + 0.587i)4-s + (0.831 + 1.14i)7-s + (−1.34 + 0.437i)13-s + (0.309 − 0.951i)16-s + (−0.831 + 1.14i)19-s + (0.809 + 0.587i)25-s + (−1.34 − 0.437i)28-s + 1.41i·43-s + (−0.309 + 0.951i)49-s + (0.831 − 1.14i)52-s + (1.34 + 0.437i)61-s + (0.309 + 0.951i)64-s + (−0.831 − 1.14i)73-s − 1.41i·76-s + (1.34 − 0.437i)79-s + ⋯ |
Λ(s)=(=(1089s/2ΓC(s)L(s)(−0.0938−0.995i)Λ(1−s)
Λ(s)=(=(1089s/2ΓC(s)L(s)(−0.0938−0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
1089
= 32⋅112
|
Sign: |
−0.0938−0.995i
|
Analytic conductor: |
0.543481 |
Root analytic conductor: |
0.737212 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1089(820,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1089, ( :0), −0.0938−0.995i)
|
Particular Values
L(21) |
≈ |
0.7977144954 |
L(21) |
≈ |
0.7977144954 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1+(0.809−0.587i)T2 |
| 5 | 1+(−0.809−0.587i)T2 |
| 7 | 1+(−0.831−1.14i)T+(−0.309+0.951i)T2 |
| 13 | 1+(1.34−0.437i)T+(0.809−0.587i)T2 |
| 17 | 1+(0.809+0.587i)T2 |
| 19 | 1+(0.831−1.14i)T+(−0.309−0.951i)T2 |
| 23 | 1+T2 |
| 29 | 1+(−0.309+0.951i)T2 |
| 31 | 1+(−0.809+0.587i)T2 |
| 37 | 1+(0.309−0.951i)T2 |
| 41 | 1+(−0.309−0.951i)T2 |
| 43 | 1−1.41iT−T2 |
| 47 | 1+(0.309+0.951i)T2 |
| 53 | 1+(−0.809+0.587i)T2 |
| 59 | 1+(0.309−0.951i)T2 |
| 61 | 1+(−1.34−0.437i)T+(0.809+0.587i)T2 |
| 67 | 1+T2 |
| 71 | 1+(−0.809−0.587i)T2 |
| 73 | 1+(0.831+1.14i)T+(−0.309+0.951i)T2 |
| 79 | 1+(−1.34+0.437i)T+(0.809−0.587i)T2 |
| 83 | 1+(0.809+0.587i)T2 |
| 89 | 1+T2 |
| 97 | 1+(0.618+1.90i)T+(−0.809+0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.08378027266777955122824549369, −9.335315909755807050048303636413, −8.607123413207573461843242586894, −8.009256356972757416304581333066, −7.14052110300060959759244997026, −5.87022071246022123282800388836, −4.99048785404188417271629906794, −4.36092048291769080420979355836, −3.05361966177090638218079065431, −1.94848483513618685276119927009,
0.76198671179119282246770457432, 2.31917304404941302629406842304, 3.90734582682606064973369848354, 4.74484380664329132083583427079, 5.22346012892849327190364256642, 6.58894840832320962476003324715, 7.37456768357368292289237611418, 8.265057042609235963932222246621, 9.030564040896637976408327841118, 10.00287834441950506099861226647