Properties

Label 2-33e2-33.32-c1-0-0
Degree $2$
Conductor $1089$
Sign $-0.870 - 0.492i$
Analytic cond. $8.69570$
Root an. cond. $2.94884$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s + 1.41i·5-s − 2.82i·7-s − 3·8-s + 1.41i·10-s + 4.24i·13-s − 2.82i·14-s − 16-s − 6·17-s − 1.41i·20-s + 8.48i·23-s + 2.99·25-s + 4.24i·26-s + 2.82i·28-s − 8·29-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.5·4-s + 0.632i·5-s − 1.06i·7-s − 1.06·8-s + 0.447i·10-s + 1.17i·13-s − 0.755i·14-s − 0.250·16-s − 1.45·17-s − 0.316i·20-s + 1.76i·23-s + 0.599·25-s + 0.832i·26-s + 0.534i·28-s − 1.48·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.870 - 0.492i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.870 - 0.492i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1089\)    =    \(3^{2} \cdot 11^{2}\)
Sign: $-0.870 - 0.492i$
Analytic conductor: \(8.69570\)
Root analytic conductor: \(2.94884\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1089} (1088, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1089,\ (\ :1/2),\ -0.870 - 0.492i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5655334362\)
\(L(\frac12)\) \(\approx\) \(0.5655334362\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 \)
good2 \( 1 - T + 2T^{2} \)
5 \( 1 - 1.41iT - 5T^{2} \)
7 \( 1 + 2.82iT - 7T^{2} \)
13 \( 1 - 4.24iT - 13T^{2} \)
17 \( 1 + 6T + 17T^{2} \)
19 \( 1 - 19T^{2} \)
23 \( 1 - 8.48iT - 23T^{2} \)
29 \( 1 + 8T + 29T^{2} \)
31 \( 1 + 8T + 31T^{2} \)
37 \( 1 + 10T + 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 - 43T^{2} \)
47 \( 1 + 2.82iT - 47T^{2} \)
53 \( 1 + 1.41iT - 53T^{2} \)
59 \( 1 - 11.3iT - 59T^{2} \)
61 \( 1 + 7.07iT - 61T^{2} \)
67 \( 1 + 4T + 67T^{2} \)
71 \( 1 - 14.1iT - 71T^{2} \)
73 \( 1 + 7.07iT - 73T^{2} \)
79 \( 1 + 8.48iT - 79T^{2} \)
83 \( 1 + 4T + 83T^{2} \)
89 \( 1 + 4.24iT - 89T^{2} \)
97 \( 1 - 10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.28386302674145506190150135339, −9.270767444191115457050762504746, −8.821530432246395056577364210723, −7.33527517311975019436416413494, −6.97378168104924839469547757038, −5.89082107297916174387086381749, −4.89830335170751826937406022994, −3.97494312672525015030931134646, −3.44197402475290713933458150761, −1.87541829871856476581948085132, 0.19026246820860583551012464840, 2.20554667488558793374068410950, 3.30344458171355219951648282808, 4.41770025287563331225164272071, 5.20396691560226240479717611412, 5.76871584237633525626608958480, 6.78313108307094394755798447436, 8.121550675525604134772370416068, 8.937983384080349493656413036513, 9.087382126779537228013400247292

Graph of the $Z$-function along the critical line