L(s) = 1 | + (1.22 − 0.707i)2-s + (0.5 − 0.866i)3-s + (0.499 − 0.866i)4-s + (0.5 − 0.866i)5-s − 1.41i·6-s + (−1.22 + 0.707i)7-s + (−0.499 − 0.866i)9-s − 1.41i·10-s + (−0.5 − 0.866i)12-s + (−0.999 + 1.73i)14-s + (−0.499 − 0.866i)15-s + (0.499 + 0.866i)16-s + (−1.22 − 0.707i)18-s + (−0.5 − 0.866i)20-s + 1.41i·21-s + ⋯ |
L(s) = 1 | + (1.22 − 0.707i)2-s + (0.5 − 0.866i)3-s + (0.499 − 0.866i)4-s + (0.5 − 0.866i)5-s − 1.41i·6-s + (−1.22 + 0.707i)7-s + (−0.499 − 0.866i)9-s − 1.41i·10-s + (−0.5 − 0.866i)12-s + (−0.999 + 1.73i)14-s + (−0.499 − 0.866i)15-s + (0.499 + 0.866i)16-s + (−1.22 − 0.707i)18-s + (−0.5 − 0.866i)20-s + 1.41i·21-s + ⋯ |
Λ(s)=(=(1089s/2ΓC(s)L(s)(−0.262+0.964i)Λ(1−s)
Λ(s)=(=(1089s/2ΓC(s)L(s)(−0.262+0.964i)Λ(1−s)
Degree: |
2 |
Conductor: |
1089
= 32⋅112
|
Sign: |
−0.262+0.964i
|
Analytic conductor: |
0.543481 |
Root analytic conductor: |
0.737212 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1089(967,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1089, ( :0), −0.262+0.964i)
|
Particular Values
L(21) |
≈ |
2.103875657 |
L(21) |
≈ |
2.103875657 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.5+0.866i)T |
| 11 | 1 |
good | 2 | 1+(−1.22+0.707i)T+(0.5−0.866i)T2 |
| 5 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 7 | 1+(1.22−0.707i)T+(0.5−0.866i)T2 |
| 13 | 1+(0.5+0.866i)T2 |
| 17 | 1−T2 |
| 19 | 1−T2 |
| 23 | 1+(−0.5−0.866i)T2 |
| 29 | 1+(−1.22+0.707i)T+(0.5−0.866i)T2 |
| 31 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 37 | 1+T+T2 |
| 41 | 1+(0.5+0.866i)T2 |
| 43 | 1+(0.5−0.866i)T2 |
| 47 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 53 | 1−T+T2 |
| 59 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 61 | 1+(1.22−0.707i)T+(0.5−0.866i)T2 |
| 67 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 71 | 1+T+T2 |
| 73 | 1+1.41iT−T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1+(1.22−0.707i)T+(0.5−0.866i)T2 |
| 89 | 1+T2 |
| 97 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.770163954859646592040401083465, −8.966222470897175577346281033624, −8.415217593764334968797809938997, −7.10297103897251148556946399910, −6.10160206583250533886459593606, −5.60857862348732504522626856422, −4.50045355799031918187645100809, −3.29622586802518816694758198894, −2.65769916299205601557110762508, −1.53911232748449003147121250377,
2.66182498676302749541908147473, 3.42175591788946648275141168233, 4.10667743345344212108250949011, 5.14571203954136845081634654854, 6.05841395278505951749810063999, 6.76905103510706204498182617591, 7.41655155789646222772413484922, 8.688234422047237810482274753567, 9.748844464190782596013385895739, 10.17277726283853219649859807951