L(s) = 1 | + (0.575 − 1.29i)2-s + (0.978 + 0.207i)3-s + (−0.669 − 0.743i)4-s + (−0.913 + 0.406i)5-s + (0.831 − 1.14i)6-s + (−0.294 − 1.38i)7-s + (0.913 + 0.406i)9-s + 1.41i·10-s + (−0.500 − 0.866i)12-s + (−1.95 − 0.415i)14-s + (−0.978 + 0.207i)15-s + (0.104 − 0.994i)16-s + (1.05 − 0.946i)18-s + (0.913 + 0.406i)20-s − 1.41i·21-s + ⋯ |
L(s) = 1 | + (0.575 − 1.29i)2-s + (0.978 + 0.207i)3-s + (−0.669 − 0.743i)4-s + (−0.913 + 0.406i)5-s + (0.831 − 1.14i)6-s + (−0.294 − 1.38i)7-s + (0.913 + 0.406i)9-s + 1.41i·10-s + (−0.500 − 0.866i)12-s + (−1.95 − 0.415i)14-s + (−0.978 + 0.207i)15-s + (0.104 − 0.994i)16-s + (1.05 − 0.946i)18-s + (0.913 + 0.406i)20-s − 1.41i·21-s + ⋯ |
Λ(s)=(=(1089s/2ΓC(s)L(s)(−0.216+0.976i)Λ(1−s)
Λ(s)=(=(1089s/2ΓC(s)L(s)(−0.216+0.976i)Λ(1−s)
Degree: |
2 |
Conductor: |
1089
= 32⋅112
|
Sign: |
−0.216+0.976i
|
Analytic conductor: |
0.543481 |
Root analytic conductor: |
0.737212 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1089(481,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1089, ( :0), −0.216+0.976i)
|
Particular Values
L(21) |
≈ |
1.661457420 |
L(21) |
≈ |
1.661457420 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.978−0.207i)T |
| 11 | 1 |
good | 2 | 1+(−0.575+1.29i)T+(−0.669−0.743i)T2 |
| 5 | 1+(0.913−0.406i)T+(0.669−0.743i)T2 |
| 7 | 1+(0.294+1.38i)T+(−0.913+0.406i)T2 |
| 13 | 1+(0.978−0.207i)T2 |
| 17 | 1+(−0.309−0.951i)T2 |
| 19 | 1+(0.809−0.587i)T2 |
| 23 | 1+(−0.5−0.866i)T2 |
| 29 | 1+(−0.294−1.38i)T+(−0.913+0.406i)T2 |
| 31 | 1+(0.104+0.994i)T+(−0.978+0.207i)T2 |
| 37 | 1+(0.309−0.951i)T+(−0.809−0.587i)T2 |
| 41 | 1+(−0.913−0.406i)T2 |
| 43 | 1+(0.5−0.866i)T2 |
| 47 | 1+(0.669−0.743i)T+(−0.104−0.994i)T2 |
| 53 | 1+(0.809−0.587i)T+(0.309−0.951i)T2 |
| 59 | 1+(−0.669−0.743i)T+(−0.104+0.994i)T2 |
| 61 | 1+(1.40+0.147i)T+(0.978+0.207i)T2 |
| 67 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 71 | 1+(−0.809−0.587i)T+(0.309+0.951i)T2 |
| 73 | 1+(−1.34−0.437i)T+(0.809+0.587i)T2 |
| 79 | 1+(−0.669−0.743i)T2 |
| 83 | 1+(1.40+0.147i)T+(0.978+0.207i)T2 |
| 89 | 1+T2 |
| 97 | 1+(−0.913−0.406i)T+(0.669+0.743i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.05658802605214049037593533980, −9.358663546949343802614499168077, −8.096725407880222243571027609778, −7.46831683073283949944697811559, −6.76074624274113714801741531640, −4.88394255065497867681319442351, −4.07855154903981425223106410577, −3.54346967428513551941942116057, −2.81815202112658576159413782599, −1.38697578060642748414256129423,
2.10278417985452916650104872269, 3.38439138241093233174617534949, 4.31783817903507970963174537084, 5.22399142127878345734191716243, 6.18975417134652901392379484720, 6.97755755403193247699258928069, 7.914054366546055436269536602337, 8.355140624394309363270090957508, 9.022068543570754253671645558284, 9.954790345350468424118392704126