L(s) = 1 | + (0.575 − 1.29i)2-s + (0.978 + 0.207i)3-s + (−0.669 − 0.743i)4-s + (−0.913 + 0.406i)5-s + (0.831 − 1.14i)6-s + (−0.294 − 1.38i)7-s + (0.913 + 0.406i)9-s + 1.41i·10-s + (−0.500 − 0.866i)12-s + (−1.95 − 0.415i)14-s + (−0.978 + 0.207i)15-s + (0.104 − 0.994i)16-s + (1.05 − 0.946i)18-s + (0.913 + 0.406i)20-s − 1.41i·21-s + ⋯ |
L(s) = 1 | + (0.575 − 1.29i)2-s + (0.978 + 0.207i)3-s + (−0.669 − 0.743i)4-s + (−0.913 + 0.406i)5-s + (0.831 − 1.14i)6-s + (−0.294 − 1.38i)7-s + (0.913 + 0.406i)9-s + 1.41i·10-s + (−0.500 − 0.866i)12-s + (−1.95 − 0.415i)14-s + (−0.978 + 0.207i)15-s + (0.104 − 0.994i)16-s + (1.05 − 0.946i)18-s + (0.913 + 0.406i)20-s − 1.41i·21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.216 + 0.976i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.216 + 0.976i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.661457420\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.661457420\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.978 - 0.207i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.575 + 1.29i)T + (-0.669 - 0.743i)T^{2} \) |
| 5 | \( 1 + (0.913 - 0.406i)T + (0.669 - 0.743i)T^{2} \) |
| 7 | \( 1 + (0.294 + 1.38i)T + (-0.913 + 0.406i)T^{2} \) |
| 13 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 17 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.294 - 1.38i)T + (-0.913 + 0.406i)T^{2} \) |
| 31 | \( 1 + (0.104 + 0.994i)T + (-0.978 + 0.207i)T^{2} \) |
| 37 | \( 1 + (0.309 - 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (-0.913 - 0.406i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.669 - 0.743i)T + (-0.104 - 0.994i)T^{2} \) |
| 53 | \( 1 + (0.809 - 0.587i)T + (0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (-0.669 - 0.743i)T + (-0.104 + 0.994i)T^{2} \) |
| 61 | \( 1 + (1.40 + 0.147i)T + (0.978 + 0.207i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.809 - 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (-1.34 - 0.437i)T + (0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.669 - 0.743i)T^{2} \) |
| 83 | \( 1 + (1.40 + 0.147i)T + (0.978 + 0.207i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-0.913 - 0.406i)T + (0.669 + 0.743i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.05658802605214049037593533980, −9.358663546949343802614499168077, −8.096725407880222243571027609778, −7.46831683073283949944697811559, −6.76074624274113714801741531640, −4.88394255065497867681319442351, −4.07855154903981425223106410577, −3.54346967428513551941942116057, −2.81815202112658576159413782599, −1.38697578060642748414256129423,
2.10278417985452916650104872269, 3.38439138241093233174617534949, 4.31783817903507970963174537084, 5.22399142127878345734191716243, 6.18975417134652901392379484720, 6.97755755403193247699258928069, 7.914054366546055436269536602337, 8.355140624394309363270090957508, 9.022068543570754253671645558284, 9.954790345350468424118392704126