L(s) = 1 | + (2.16 + 5.22i)2-s + (41.5 − 27.7i)3-s + (−22.6 + 22.6i)4-s + (53.2 + 10.5i)5-s + (234. + 156. i)6-s + (90.3 − 17.9i)7-s + (−167. − 69.2i)8-s + (675. − 1.63e3i)9-s + (59.8 + 301. i)10-s + (−4.84 + 7.24i)11-s + (−311. + 1.56e3i)12-s + (−39.4 − 39.4i)13-s + (289. + 433. i)14-s + (2.50e3 − 1.03e3i)15-s − 1.02e3i·16-s + (2.53e3 + 4.20e3i)17-s + ⋯ |
L(s) = 1 | + (0.270 + 0.653i)2-s + (1.53 − 1.02i)3-s + (−0.353 + 0.353i)4-s + (0.425 + 0.0846i)5-s + (1.08 + 0.726i)6-s + (0.263 − 0.0524i)7-s + (−0.326 − 0.135i)8-s + (0.926 − 2.23i)9-s + (0.0598 + 0.301i)10-s + (−0.00363 + 0.00544i)11-s + (−0.180 + 0.907i)12-s + (−0.0179 − 0.0179i)13-s + (0.105 + 0.157i)14-s + (0.741 − 0.307i)15-s − 0.250i·16-s + (0.515 + 0.856i)17-s + ⋯ |
Λ(s)=(=(34s/2ΓC(s)L(s)(0.999+0.00333i)Λ(7−s)
Λ(s)=(=(34s/2ΓC(s+3)L(s)(0.999+0.00333i)Λ(1−s)
Degree: |
2 |
Conductor: |
34
= 2⋅17
|
Sign: |
0.999+0.00333i
|
Analytic conductor: |
7.82183 |
Root analytic conductor: |
2.79675 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ34(29,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 34, ( :3), 0.999+0.00333i)
|
Particular Values
L(27) |
≈ |
3.08015−0.00513879i |
L(21) |
≈ |
3.08015−0.00513879i |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−2.16−5.22i)T |
| 17 | 1+(−2.53e3−4.20e3i)T |
good | 3 | 1+(−41.5+27.7i)T+(278.−673.i)T2 |
| 5 | 1+(−53.2−10.5i)T+(1.44e4+5.97e3i)T2 |
| 7 | 1+(−90.3+17.9i)T+(1.08e5−4.50e4i)T2 |
| 11 | 1+(4.84−7.24i)T+(−6.77e5−1.63e6i)T2 |
| 13 | 1+(39.4+39.4i)T+4.82e6iT2 |
| 19 | 1+(−3.38e3−8.16e3i)T+(−3.32e7+3.32e7i)T2 |
| 23 | 1+(1.45e4+9.72e3i)T+(5.66e7+1.36e8i)T2 |
| 29 | 1+(9.04e3−4.54e4i)T+(−5.49e8−2.27e8i)T2 |
| 31 | 1+(1.96e4+2.94e4i)T+(−3.39e8+8.19e8i)T2 |
| 37 | 1+(−1.84e4+1.23e4i)T+(9.81e8−2.37e9i)T2 |
| 41 | 1+(−6.54e3+1.30e3i)T+(4.38e9−1.81e9i)T2 |
| 43 | 1+(3.14e4−7.58e4i)T+(−4.46e9−4.46e9i)T2 |
| 47 | 1+(1.14e5+1.14e5i)T+1.07e10iT2 |
| 53 | 1+(−5.46e4−1.32e5i)T+(−1.56e10+1.56e10i)T2 |
| 59 | 1+(−1.91e5−7.94e4i)T+(2.98e10+2.98e10i)T2 |
| 61 | 1+(4.58e4+2.30e5i)T+(−4.75e10+1.97e10i)T2 |
| 67 | 1−4.19e5iT−9.04e10T2 |
| 71 | 1+(−2.44e5+1.63e5i)T+(4.90e10−1.18e11i)T2 |
| 73 | 1+(2.02e4+4.02e3i)T+(1.39e11+5.79e10i)T2 |
| 79 | 1+(−1.44e5+2.16e5i)T+(−9.30e10−2.24e11i)T2 |
| 83 | 1+(−8.82e5+3.65e5i)T+(2.31e11−2.31e11i)T2 |
| 89 | 1+(−3.91e5+3.91e5i)T−4.96e11iT2 |
| 97 | 1+(6.46e3−3.25e4i)T+(−7.69e11−3.18e11i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.71340258656295376594416533249, −14.35891877616793225161514745408, −13.22748563774158136616211149735, −12.29464697742746263609391845209, −9.810913656952226111425984777962, −8.415210265026188124858865783590, −7.59375872526357629550620940501, −6.13678386483257893256055337381, −3.61640754624302440469582501833, −1.80586361877009960724271490167,
2.18573476109943796504614507282, 3.59216872540143353564263559295, 5.06330836291640766536752156240, 7.898002679027655052554169423413, 9.330532185179839154917865073833, 9.932494421922539940795887762851, 11.47694896718461114772397312186, 13.40797432035121083036018360535, 13.99750157278227337161805145508, 15.11813393923252800615436449654