L(s) = 1 | + (0.982 + 0.183i)2-s + (0.932 + 0.361i)4-s + (−0.554 − 0.895i)5-s + (0.850 + 0.526i)8-s + (0.602 − 0.798i)9-s + (−0.380 − 0.981i)10-s + (−1.02 − 0.634i)13-s + (0.739 + 0.673i)16-s + (0.739 + 0.673i)17-s + (0.739 − 0.673i)18-s + (−0.193 − 1.03i)20-s + (−0.0483 + 0.0971i)25-s + (−0.890 − 0.811i)26-s + (−0.576 + 1.48i)29-s + (0.602 + 0.798i)32-s + ⋯ |
L(s) = 1 | + (0.982 + 0.183i)2-s + (0.932 + 0.361i)4-s + (−0.554 − 0.895i)5-s + (0.850 + 0.526i)8-s + (0.602 − 0.798i)9-s + (−0.380 − 0.981i)10-s + (−1.02 − 0.634i)13-s + (0.739 + 0.673i)16-s + (0.739 + 0.673i)17-s + (0.739 − 0.673i)18-s + (−0.193 − 1.03i)20-s + (−0.0483 + 0.0971i)25-s + (−0.890 − 0.811i)26-s + (−0.576 + 1.48i)29-s + (0.602 + 0.798i)32-s + ⋯ |
Λ(s)=(=(1156s/2ΓC(s)L(s)(0.960+0.278i)Λ(1−s)
Λ(s)=(=(1156s/2ΓC(s)L(s)(0.960+0.278i)Λ(1−s)
Degree: |
2 |
Conductor: |
1156
= 22⋅172
|
Sign: |
0.960+0.278i
|
Analytic conductor: |
0.576919 |
Root analytic conductor: |
0.759551 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1156(135,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1156, ( :0), 0.960+0.278i)
|
Particular Values
L(21) |
≈ |
1.794971607 |
L(21) |
≈ |
1.794971607 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.982−0.183i)T |
| 17 | 1+(−0.739−0.673i)T |
good | 3 | 1+(−0.602+0.798i)T2 |
| 5 | 1+(0.554+0.895i)T+(−0.445+0.895i)T2 |
| 7 | 1+(−0.273−0.961i)T2 |
| 11 | 1+(0.739+0.673i)T2 |
| 13 | 1+(1.02+0.634i)T+(0.445+0.895i)T2 |
| 19 | 1+(−0.932+0.361i)T2 |
| 23 | 1+(−0.273−0.961i)T2 |
| 29 | 1+(0.576−1.48i)T+(−0.739−0.673i)T2 |
| 31 | 1+(0.445+0.895i)T2 |
| 37 | 1+(0.365+0.0339i)T+(0.982+0.183i)T2 |
| 41 | 1+(0.942−0.469i)T+(0.602−0.798i)T2 |
| 43 | 1+(−0.0922+0.995i)T2 |
| 47 | 1+(0.273−0.961i)T2 |
| 53 | 1+(−0.329+0.436i)T+(−0.273−0.961i)T2 |
| 59 | 1+(0.850+0.526i)T2 |
| 61 | 1+(1.72−0.489i)T+(0.850−0.526i)T2 |
| 67 | 1+(−0.932+0.361i)T2 |
| 71 | 1+(−0.273−0.961i)T2 |
| 73 | 1+(−1.07+1.17i)T+(−0.0922−0.995i)T2 |
| 79 | 1+(0.932−0.361i)T2 |
| 83 | 1+(0.602+0.798i)T2 |
| 89 | 1+(1.67−1.03i)T+(0.445−0.895i)T2 |
| 97 | 1+(0.576+0.435i)T+(0.273+0.961i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.06706295507933575298841500907, −9.054358931473362507320195822207, −8.089829924418128477321066536574, −7.42326737145714415271847980229, −6.56716115062235479634095840296, −5.49955892845792557878241895539, −4.80192745306717756972990534308, −3.92454956943859865693968939851, −3.06433417513601149814297403798, −1.45058883492430517636768617904,
1.95925444809955159535992324438, 2.90576493237275265068458125636, 3.93015085882034604302827768668, 4.77396694661198314396230551195, 5.63595430999851957833209812169, 6.87315530382093505474111182115, 7.26682839154861595135534226752, 7.997854580358814393410188040471, 9.579716829864106219208320699949, 10.19488023814903711866728805278