L(s) = 1 | + (0.982 + 0.183i)2-s + (0.932 + 0.361i)4-s + (−0.554 − 0.895i)5-s + (0.850 + 0.526i)8-s + (0.602 − 0.798i)9-s + (−0.380 − 0.981i)10-s + (−1.02 − 0.634i)13-s + (0.739 + 0.673i)16-s + (0.739 + 0.673i)17-s + (0.739 − 0.673i)18-s + (−0.193 − 1.03i)20-s + (−0.0483 + 0.0971i)25-s + (−0.890 − 0.811i)26-s + (−0.576 + 1.48i)29-s + (0.602 + 0.798i)32-s + ⋯ |
L(s) = 1 | + (0.982 + 0.183i)2-s + (0.932 + 0.361i)4-s + (−0.554 − 0.895i)5-s + (0.850 + 0.526i)8-s + (0.602 − 0.798i)9-s + (−0.380 − 0.981i)10-s + (−1.02 − 0.634i)13-s + (0.739 + 0.673i)16-s + (0.739 + 0.673i)17-s + (0.739 − 0.673i)18-s + (−0.193 − 1.03i)20-s + (−0.0483 + 0.0971i)25-s + (−0.890 − 0.811i)26-s + (−0.576 + 1.48i)29-s + (0.602 + 0.798i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.960 + 0.278i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.960 + 0.278i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.794971607\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.794971607\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.982 - 0.183i)T \) |
| 17 | \( 1 + (-0.739 - 0.673i)T \) |
good | 3 | \( 1 + (-0.602 + 0.798i)T^{2} \) |
| 5 | \( 1 + (0.554 + 0.895i)T + (-0.445 + 0.895i)T^{2} \) |
| 7 | \( 1 + (-0.273 - 0.961i)T^{2} \) |
| 11 | \( 1 + (0.739 + 0.673i)T^{2} \) |
| 13 | \( 1 + (1.02 + 0.634i)T + (0.445 + 0.895i)T^{2} \) |
| 19 | \( 1 + (-0.932 + 0.361i)T^{2} \) |
| 23 | \( 1 + (-0.273 - 0.961i)T^{2} \) |
| 29 | \( 1 + (0.576 - 1.48i)T + (-0.739 - 0.673i)T^{2} \) |
| 31 | \( 1 + (0.445 + 0.895i)T^{2} \) |
| 37 | \( 1 + (0.365 + 0.0339i)T + (0.982 + 0.183i)T^{2} \) |
| 41 | \( 1 + (0.942 - 0.469i)T + (0.602 - 0.798i)T^{2} \) |
| 43 | \( 1 + (-0.0922 + 0.995i)T^{2} \) |
| 47 | \( 1 + (0.273 - 0.961i)T^{2} \) |
| 53 | \( 1 + (-0.329 + 0.436i)T + (-0.273 - 0.961i)T^{2} \) |
| 59 | \( 1 + (0.850 + 0.526i)T^{2} \) |
| 61 | \( 1 + (1.72 - 0.489i)T + (0.850 - 0.526i)T^{2} \) |
| 67 | \( 1 + (-0.932 + 0.361i)T^{2} \) |
| 71 | \( 1 + (-0.273 - 0.961i)T^{2} \) |
| 73 | \( 1 + (-1.07 + 1.17i)T + (-0.0922 - 0.995i)T^{2} \) |
| 79 | \( 1 + (0.932 - 0.361i)T^{2} \) |
| 83 | \( 1 + (0.602 + 0.798i)T^{2} \) |
| 89 | \( 1 + (1.67 - 1.03i)T + (0.445 - 0.895i)T^{2} \) |
| 97 | \( 1 + (0.576 + 0.435i)T + (0.273 + 0.961i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06706295507933575298841500907, −9.054358931473362507320195822207, −8.089829924418128477321066536574, −7.42326737145714415271847980229, −6.56716115062235479634095840296, −5.49955892845792557878241895539, −4.80192745306717756972990534308, −3.92454956943859865693968939851, −3.06433417513601149814297403798, −1.45058883492430517636768617904,
1.95925444809955159535992324438, 2.90576493237275265068458125636, 3.93015085882034604302827768668, 4.77396694661198314396230551195, 5.63595430999851957833209812169, 6.87315530382093505474111182115, 7.26682839154861595135534226752, 7.997854580358814393410188040471, 9.579716829864106219208320699949, 10.19488023814903711866728805278