L(s) = 1 | + (−0.850 − 0.526i)2-s + (0.445 + 0.895i)4-s + (0.0170 + 0.183i)5-s + (0.0922 − 0.995i)8-s + (0.932 + 0.361i)9-s + (0.0822 − 0.165i)10-s + (0.172 − 1.85i)13-s + (−0.602 + 0.798i)16-s + (−0.602 + 0.798i)17-s + (−0.602 − 0.798i)18-s + (−0.156 + 0.0971i)20-s + (0.949 − 0.177i)25-s + (−1.12 + 1.48i)26-s + (0.831 + 1.66i)29-s + (0.932 − 0.361i)32-s + ⋯ |
L(s) = 1 | + (−0.850 − 0.526i)2-s + (0.445 + 0.895i)4-s + (0.0170 + 0.183i)5-s + (0.0922 − 0.995i)8-s + (0.932 + 0.361i)9-s + (0.0822 − 0.165i)10-s + (0.172 − 1.85i)13-s + (−0.602 + 0.798i)16-s + (−0.602 + 0.798i)17-s + (−0.602 − 0.798i)18-s + (−0.156 + 0.0971i)20-s + (0.949 − 0.177i)25-s + (−1.12 + 1.48i)26-s + (0.831 + 1.66i)29-s + (0.932 − 0.361i)32-s + ⋯ |
Λ(s)=(=(1156s/2ΓC(s)L(s)(0.887+0.460i)Λ(1−s)
Λ(s)=(=(1156s/2ΓC(s)L(s)(0.887+0.460i)Λ(1−s)
Degree: |
2 |
Conductor: |
1156
= 22⋅172
|
Sign: |
0.887+0.460i
|
Analytic conductor: |
0.576919 |
Root analytic conductor: |
0.759551 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1156(171,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1156, ( :0), 0.887+0.460i)
|
Particular Values
L(21) |
≈ |
0.7723542455 |
L(21) |
≈ |
0.7723542455 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.850+0.526i)T |
| 17 | 1+(0.602−0.798i)T |
good | 3 | 1+(−0.932−0.361i)T2 |
| 5 | 1+(−0.0170−0.183i)T+(−0.982+0.183i)T2 |
| 7 | 1+(−0.739−0.673i)T2 |
| 11 | 1+(0.602−0.798i)T2 |
| 13 | 1+(−0.172+1.85i)T+(−0.982−0.183i)T2 |
| 19 | 1+(−0.445+0.895i)T2 |
| 23 | 1+(−0.739−0.673i)T2 |
| 29 | 1+(−0.831−1.66i)T+(−0.602+0.798i)T2 |
| 31 | 1+(0.982+0.183i)T2 |
| 37 | 1+(−0.465+1.63i)T+(−0.850−0.526i)T2 |
| 41 | 1+(0.181+0.0339i)T+(0.932+0.361i)T2 |
| 43 | 1+(0.273−0.961i)T2 |
| 47 | 1+(−0.739+0.673i)T2 |
| 53 | 1+(−1.37−0.533i)T+(0.739+0.673i)T2 |
| 59 | 1+(−0.0922+0.995i)T2 |
| 61 | 1+(1.45+1.32i)T+(0.0922+0.995i)T2 |
| 67 | 1+(−0.445+0.895i)T2 |
| 71 | 1+(−0.739−0.673i)T2 |
| 73 | 1+(1.12−1.48i)T+(−0.273−0.961i)T2 |
| 79 | 1+(−0.445+0.895i)T2 |
| 83 | 1+(−0.932+0.361i)T2 |
| 89 | 1+(0.156+1.69i)T+(−0.982+0.183i)T2 |
| 97 | 1+(−0.831−0.322i)T+(0.739+0.673i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.25015994314784665826251052627, −9.073859945789747553181036171205, −8.412976924467154628502987840882, −7.56939769053266226901422825568, −6.93236944455164994559250706208, −5.82128572419878965221904714830, −4.58152985324728172748177021756, −3.49192391556492926419752601929, −2.53128946298729961469836672404, −1.19409123053474964611097160587,
1.26359413014448654490991500921, 2.45907468546747568195689857256, 4.22189945014423448607195130546, 4.88647119347948135699681688565, 6.28966686511274309968037154781, 6.76476919813235285430692352468, 7.50242379020442123633830183159, 8.595712553922845983825962680516, 9.183188401365288943121163420154, 9.833966130512109272327170612822