L(s) = 1 | + (0.273 − 0.961i)2-s + (−0.850 − 0.526i)4-s + (−0.907 + 0.995i)5-s + (−0.739 + 0.673i)8-s + (0.982 + 0.183i)9-s + (0.709 + 1.14i)10-s + (1.45 − 1.32i)13-s + (0.445 + 0.895i)16-s + (0.445 + 0.895i)17-s + (0.445 − 0.895i)18-s + (1.29 − 0.368i)20-s + (−0.0752 − 0.811i)25-s + (−0.876 − 1.75i)26-s + (−0.193 + 0.312i)29-s + (0.982 − 0.183i)32-s + ⋯ |
L(s) = 1 | + (0.273 − 0.961i)2-s + (−0.850 − 0.526i)4-s + (−0.907 + 0.995i)5-s + (−0.739 + 0.673i)8-s + (0.982 + 0.183i)9-s + (0.709 + 1.14i)10-s + (1.45 − 1.32i)13-s + (0.445 + 0.895i)16-s + (0.445 + 0.895i)17-s + (0.445 − 0.895i)18-s + (1.29 − 0.368i)20-s + (−0.0752 − 0.811i)25-s + (−0.876 − 1.75i)26-s + (−0.193 + 0.312i)29-s + (0.982 − 0.183i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.701 + 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.701 + 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.052149648\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.052149648\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.273 + 0.961i)T \) |
| 17 | \( 1 + (-0.445 - 0.895i)T \) |
good | 3 | \( 1 + (-0.982 - 0.183i)T^{2} \) |
| 5 | \( 1 + (0.907 - 0.995i)T + (-0.0922 - 0.995i)T^{2} \) |
| 7 | \( 1 + (0.932 + 0.361i)T^{2} \) |
| 11 | \( 1 + (0.445 + 0.895i)T^{2} \) |
| 13 | \( 1 + (-1.45 + 1.32i)T + (0.0922 - 0.995i)T^{2} \) |
| 19 | \( 1 + (0.850 - 0.526i)T^{2} \) |
| 23 | \( 1 + (0.932 + 0.361i)T^{2} \) |
| 29 | \( 1 + (0.193 - 0.312i)T + (-0.445 - 0.895i)T^{2} \) |
| 31 | \( 1 + (0.0922 - 0.995i)T^{2} \) |
| 37 | \( 1 + (-1.53 + 1.15i)T + (0.273 - 0.961i)T^{2} \) |
| 41 | \( 1 + (-1.34 - 0.124i)T + (0.982 + 0.183i)T^{2} \) |
| 43 | \( 1 + (0.602 + 0.798i)T^{2} \) |
| 47 | \( 1 + (-0.932 + 0.361i)T^{2} \) |
| 53 | \( 1 + (1.83 + 0.342i)T + (0.932 + 0.361i)T^{2} \) |
| 59 | \( 1 + (-0.739 + 0.673i)T^{2} \) |
| 61 | \( 1 + (0.719 - 1.85i)T + (-0.739 - 0.673i)T^{2} \) |
| 67 | \( 1 + (0.850 - 0.526i)T^{2} \) |
| 71 | \( 1 + (0.932 + 0.361i)T^{2} \) |
| 73 | \( 1 + (0.328 - 0.163i)T + (0.602 - 0.798i)T^{2} \) |
| 79 | \( 1 + (-0.850 + 0.526i)T^{2} \) |
| 83 | \( 1 + (0.982 - 0.183i)T^{2} \) |
| 89 | \( 1 + (-0.404 - 0.368i)T + (0.0922 + 0.995i)T^{2} \) |
| 97 | \( 1 + (0.193 - 1.03i)T + (-0.932 - 0.361i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.23151467611794046620350357169, −9.297342454502210641804252666874, −8.128671516944279732088370523676, −7.67895382535430247908202225206, −6.40697761167907435606660948107, −5.60404846513164993326201516111, −4.25126074267269618165755246343, −3.66086632386963976420986757119, −2.83338690964142211479623405222, −1.29975557571345099482002491333,
1.18408560457446018734734438584, 3.41870578512578101064778384167, 4.37391512214336856915205362607, 4.67267238947128959082283325837, 6.02882843987016664324519371206, 6.74612184402807536765117291850, 7.73783147409510055098761743305, 8.209342535383463263693337673970, 9.280091241294008570554254280553, 9.519480735128088465321731150082