L(s) = 1 | + (0.273 − 0.961i)2-s + (−0.850 − 0.526i)4-s + (−0.907 + 0.995i)5-s + (−0.739 + 0.673i)8-s + (0.982 + 0.183i)9-s + (0.709 + 1.14i)10-s + (1.45 − 1.32i)13-s + (0.445 + 0.895i)16-s + (0.445 + 0.895i)17-s + (0.445 − 0.895i)18-s + (1.29 − 0.368i)20-s + (−0.0752 − 0.811i)25-s + (−0.876 − 1.75i)26-s + (−0.193 + 0.312i)29-s + (0.982 − 0.183i)32-s + ⋯ |
L(s) = 1 | + (0.273 − 0.961i)2-s + (−0.850 − 0.526i)4-s + (−0.907 + 0.995i)5-s + (−0.739 + 0.673i)8-s + (0.982 + 0.183i)9-s + (0.709 + 1.14i)10-s + (1.45 − 1.32i)13-s + (0.445 + 0.895i)16-s + (0.445 + 0.895i)17-s + (0.445 − 0.895i)18-s + (1.29 − 0.368i)20-s + (−0.0752 − 0.811i)25-s + (−0.876 − 1.75i)26-s + (−0.193 + 0.312i)29-s + (0.982 − 0.183i)32-s + ⋯ |
Λ(s)=(=(1156s/2ΓC(s)L(s)(0.701+0.712i)Λ(1−s)
Λ(s)=(=(1156s/2ΓC(s)L(s)(0.701+0.712i)Λ(1−s)
Degree: |
2 |
Conductor: |
1156
= 22⋅172
|
Sign: |
0.701+0.712i
|
Analytic conductor: |
0.576919 |
Root analytic conductor: |
0.759551 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1156(203,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1156, ( :0), 0.701+0.712i)
|
Particular Values
L(21) |
≈ |
1.052149648 |
L(21) |
≈ |
1.052149648 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.273+0.961i)T |
| 17 | 1+(−0.445−0.895i)T |
good | 3 | 1+(−0.982−0.183i)T2 |
| 5 | 1+(0.907−0.995i)T+(−0.0922−0.995i)T2 |
| 7 | 1+(0.932+0.361i)T2 |
| 11 | 1+(0.445+0.895i)T2 |
| 13 | 1+(−1.45+1.32i)T+(0.0922−0.995i)T2 |
| 19 | 1+(0.850−0.526i)T2 |
| 23 | 1+(0.932+0.361i)T2 |
| 29 | 1+(0.193−0.312i)T+(−0.445−0.895i)T2 |
| 31 | 1+(0.0922−0.995i)T2 |
| 37 | 1+(−1.53+1.15i)T+(0.273−0.961i)T2 |
| 41 | 1+(−1.34−0.124i)T+(0.982+0.183i)T2 |
| 43 | 1+(0.602+0.798i)T2 |
| 47 | 1+(−0.932+0.361i)T2 |
| 53 | 1+(1.83+0.342i)T+(0.932+0.361i)T2 |
| 59 | 1+(−0.739+0.673i)T2 |
| 61 | 1+(0.719−1.85i)T+(−0.739−0.673i)T2 |
| 67 | 1+(0.850−0.526i)T2 |
| 71 | 1+(0.932+0.361i)T2 |
| 73 | 1+(0.328−0.163i)T+(0.602−0.798i)T2 |
| 79 | 1+(−0.850+0.526i)T2 |
| 83 | 1+(0.982−0.183i)T2 |
| 89 | 1+(−0.404−0.368i)T+(0.0922+0.995i)T2 |
| 97 | 1+(0.193−1.03i)T+(−0.932−0.361i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.23151467611794046620350357169, −9.297342454502210641804252666874, −8.128671516944279732088370523676, −7.67895382535430247908202225206, −6.40697761167907435606660948107, −5.60404846513164993326201516111, −4.25126074267269618165755246343, −3.66086632386963976420986757119, −2.83338690964142211479623405222, −1.29975557571345099482002491333,
1.18408560457446018734734438584, 3.41870578512578101064778384167, 4.37391512214336856915205362607, 4.67267238947128959082283325837, 6.02882843987016664324519371206, 6.74612184402807536765117291850, 7.73783147409510055098761743305, 8.209342535383463263693337673970, 9.280091241294008570554254280553, 9.519480735128088465321731150082