L(s) = 1 | + (−0.273 + 0.961i)2-s + (−0.850 − 0.526i)4-s + (1.09 + 0.995i)5-s + (0.739 − 0.673i)8-s + (−0.982 − 0.183i)9-s + (−1.25 + 0.778i)10-s + (−1.45 + 1.32i)13-s + (0.445 + 0.895i)16-s + (0.445 + 0.895i)17-s + (0.445 − 0.895i)18-s + (−0.404 − 1.42i)20-s + (0.109 + 1.17i)25-s + (−0.876 − 1.75i)26-s + (1.67 + 1.03i)29-s + (−0.982 + 0.183i)32-s + ⋯ |
L(s) = 1 | + (−0.273 + 0.961i)2-s + (−0.850 − 0.526i)4-s + (1.09 + 0.995i)5-s + (0.739 − 0.673i)8-s + (−0.982 − 0.183i)9-s + (−1.25 + 0.778i)10-s + (−1.45 + 1.32i)13-s + (0.445 + 0.895i)16-s + (0.445 + 0.895i)17-s + (0.445 − 0.895i)18-s + (−0.404 − 1.42i)20-s + (0.109 + 1.17i)25-s + (−0.876 − 1.75i)26-s + (1.67 + 1.03i)29-s + (−0.982 + 0.183i)32-s + ⋯ |
Λ(s)=(=(1156s/2ΓC(s)L(s)(−0.701−0.712i)Λ(1−s)
Λ(s)=(=(1156s/2ΓC(s)L(s)(−0.701−0.712i)Λ(1−s)
Degree: |
2 |
Conductor: |
1156
= 22⋅172
|
Sign: |
−0.701−0.712i
|
Analytic conductor: |
0.576919 |
Root analytic conductor: |
0.759551 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1156(375,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1156, ( :0), −0.701−0.712i)
|
Particular Values
L(21) |
≈ |
0.8563595889 |
L(21) |
≈ |
0.8563595889 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.273−0.961i)T |
| 17 | 1+(−0.445−0.895i)T |
good | 3 | 1+(0.982+0.183i)T2 |
| 5 | 1+(−1.09−0.995i)T+(0.0922+0.995i)T2 |
| 7 | 1+(−0.932−0.361i)T2 |
| 11 | 1+(−0.445−0.895i)T2 |
| 13 | 1+(1.45−1.32i)T+(0.0922−0.995i)T2 |
| 19 | 1+(0.850−0.526i)T2 |
| 23 | 1+(−0.932−0.361i)T2 |
| 29 | 1+(−1.67−1.03i)T+(0.445+0.895i)T2 |
| 31 | 1+(−0.0922+0.995i)T2 |
| 37 | 1+(−0.329−0.436i)T+(−0.273+0.961i)T2 |
| 41 | 1+(−0.136+1.47i)T+(−0.982−0.183i)T2 |
| 43 | 1+(0.602+0.798i)T2 |
| 47 | 1+(−0.932+0.361i)T2 |
| 53 | 1+(1.83+0.342i)T+(0.932+0.361i)T2 |
| 59 | 1+(−0.739+0.673i)T2 |
| 61 | 1+(−0.172−0.0666i)T+(0.739+0.673i)T2 |
| 67 | 1+(0.850−0.526i)T2 |
| 71 | 1+(−0.932−0.361i)T2 |
| 73 | 1+(0.876+1.75i)T+(−0.602+0.798i)T2 |
| 79 | 1+(0.850−0.526i)T2 |
| 83 | 1+(0.982−0.183i)T2 |
| 89 | 1+(0.404+0.368i)T+(0.0922+0.995i)T2 |
| 97 | 1+(−1.67−0.312i)T+(0.932+0.361i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.17498748189973755384957956010, −9.364369583629410239800649844667, −8.762883869714964361025263145182, −7.68733132265928789970097978944, −6.79451942785087842439763683375, −6.30961952265729104644506766670, −5.48672023804609392908304892759, −4.54236210323809808237790988735, −3.09388174612945160688824368725, −1.92383587300622588798351419297,
0.850730756124675275330105089148, 2.39415563935079843228643075734, 2.96715539179495410502403970997, 4.68181236645547792697953891712, 5.17272433818413914177593384793, 5.99957303580887622659680052670, 7.60392472927279573344576576042, 8.267931069885464755022162971854, 9.078436745206874386359748733090, 9.865036056923953572359616650425