L(s) = 1 | + (−0.273 + 0.961i)2-s + (−0.850 − 0.526i)4-s + (1.09 + 0.995i)5-s + (0.739 − 0.673i)8-s + (−0.982 − 0.183i)9-s + (−1.25 + 0.778i)10-s + (−1.45 + 1.32i)13-s + (0.445 + 0.895i)16-s + (0.445 + 0.895i)17-s + (0.445 − 0.895i)18-s + (−0.404 − 1.42i)20-s + (0.109 + 1.17i)25-s + (−0.876 − 1.75i)26-s + (1.67 + 1.03i)29-s + (−0.982 + 0.183i)32-s + ⋯ |
L(s) = 1 | + (−0.273 + 0.961i)2-s + (−0.850 − 0.526i)4-s + (1.09 + 0.995i)5-s + (0.739 − 0.673i)8-s + (−0.982 − 0.183i)9-s + (−1.25 + 0.778i)10-s + (−1.45 + 1.32i)13-s + (0.445 + 0.895i)16-s + (0.445 + 0.895i)17-s + (0.445 − 0.895i)18-s + (−0.404 − 1.42i)20-s + (0.109 + 1.17i)25-s + (−0.876 − 1.75i)26-s + (1.67 + 1.03i)29-s + (−0.982 + 0.183i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.701 - 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.701 - 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8563595889\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8563595889\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.273 - 0.961i)T \) |
| 17 | \( 1 + (-0.445 - 0.895i)T \) |
good | 3 | \( 1 + (0.982 + 0.183i)T^{2} \) |
| 5 | \( 1 + (-1.09 - 0.995i)T + (0.0922 + 0.995i)T^{2} \) |
| 7 | \( 1 + (-0.932 - 0.361i)T^{2} \) |
| 11 | \( 1 + (-0.445 - 0.895i)T^{2} \) |
| 13 | \( 1 + (1.45 - 1.32i)T + (0.0922 - 0.995i)T^{2} \) |
| 19 | \( 1 + (0.850 - 0.526i)T^{2} \) |
| 23 | \( 1 + (-0.932 - 0.361i)T^{2} \) |
| 29 | \( 1 + (-1.67 - 1.03i)T + (0.445 + 0.895i)T^{2} \) |
| 31 | \( 1 + (-0.0922 + 0.995i)T^{2} \) |
| 37 | \( 1 + (-0.329 - 0.436i)T + (-0.273 + 0.961i)T^{2} \) |
| 41 | \( 1 + (-0.136 + 1.47i)T + (-0.982 - 0.183i)T^{2} \) |
| 43 | \( 1 + (0.602 + 0.798i)T^{2} \) |
| 47 | \( 1 + (-0.932 + 0.361i)T^{2} \) |
| 53 | \( 1 + (1.83 + 0.342i)T + (0.932 + 0.361i)T^{2} \) |
| 59 | \( 1 + (-0.739 + 0.673i)T^{2} \) |
| 61 | \( 1 + (-0.172 - 0.0666i)T + (0.739 + 0.673i)T^{2} \) |
| 67 | \( 1 + (0.850 - 0.526i)T^{2} \) |
| 71 | \( 1 + (-0.932 - 0.361i)T^{2} \) |
| 73 | \( 1 + (0.876 + 1.75i)T + (-0.602 + 0.798i)T^{2} \) |
| 79 | \( 1 + (0.850 - 0.526i)T^{2} \) |
| 83 | \( 1 + (0.982 - 0.183i)T^{2} \) |
| 89 | \( 1 + (0.404 + 0.368i)T + (0.0922 + 0.995i)T^{2} \) |
| 97 | \( 1 + (-1.67 - 0.312i)T + (0.932 + 0.361i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.17498748189973755384957956010, −9.364369583629410239800649844667, −8.762883869714964361025263145182, −7.68733132265928789970097978944, −6.79451942785087842439763683375, −6.30961952265729104644506766670, −5.48672023804609392908304892759, −4.54236210323809808237790988735, −3.09388174612945160688824368725, −1.92383587300622588798351419297,
0.850730756124675275330105089148, 2.39415563935079843228643075734, 2.96715539179495410502403970997, 4.68181236645547792697953891712, 5.17272433818413914177593384793, 5.99957303580887622659680052670, 7.60392472927279573344576576042, 8.267931069885464755022162971854, 9.078436745206874386359748733090, 9.865036056923953572359616650425