L(s) = 1 | + (0.798 + 0.602i)2-s + (0.273 + 0.961i)4-s + (−0.739 + 1.67i)5-s + (−0.361 + 0.932i)8-s + (0.995 − 0.0922i)9-s + (−1.59 + 0.890i)10-s + (−1.85 − 0.719i)13-s + (−0.850 + 0.526i)16-s + (0.850 − 0.526i)17-s + (0.850 + 0.526i)18-s + (−1.81 − 0.252i)20-s + (−1.58 − 1.73i)25-s + (−1.04 − 1.69i)26-s + (1.11 + 0.621i)29-s + (−0.995 − 0.0922i)32-s + ⋯ |
L(s) = 1 | + (0.798 + 0.602i)2-s + (0.273 + 0.961i)4-s + (−0.739 + 1.67i)5-s + (−0.361 + 0.932i)8-s + (0.995 − 0.0922i)9-s + (−1.59 + 0.890i)10-s + (−1.85 − 0.719i)13-s + (−0.850 + 0.526i)16-s + (0.850 − 0.526i)17-s + (0.850 + 0.526i)18-s + (−1.81 − 0.252i)20-s + (−1.58 − 1.73i)25-s + (−1.04 − 1.69i)26-s + (1.11 + 0.621i)29-s + (−0.995 − 0.0922i)32-s + ⋯ |
Λ(s)=(=(1156s/2ΓC(s)L(s)(−0.624−0.781i)Λ(1−s)
Λ(s)=(=(1156s/2ΓC(s)L(s)(−0.624−0.781i)Λ(1−s)
Degree: |
2 |
Conductor: |
1156
= 22⋅172
|
Sign: |
−0.624−0.781i
|
Analytic conductor: |
0.576919 |
Root analytic conductor: |
0.759551 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1156(735,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1156, ( :0), −0.624−0.781i)
|
Particular Values
L(21) |
≈ |
1.402965593 |
L(21) |
≈ |
1.402965593 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.798−0.602i)T |
| 17 | 1+(−0.850+0.526i)T |
good | 3 | 1+(−0.995+0.0922i)T2 |
| 5 | 1+(0.739−1.67i)T+(−0.673−0.739i)T2 |
| 7 | 1+(0.183+0.982i)T2 |
| 11 | 1+(0.526+0.850i)T2 |
| 13 | 1+(1.85+0.719i)T+(0.739+0.673i)T2 |
| 19 | 1+(−0.273+0.961i)T2 |
| 23 | 1+(0.183+0.982i)T2 |
| 29 | 1+(−1.11−0.621i)T+(0.526+0.850i)T2 |
| 31 | 1+(−0.673+0.739i)T2 |
| 37 | 1+(−1.87−0.629i)T+(0.798+0.602i)T2 |
| 41 | 1+(−0.0373−0.806i)T+(−0.995+0.0922i)T2 |
| 43 | 1+(0.445+0.895i)T2 |
| 47 | 1+(0.982+0.183i)T2 |
| 53 | 1+(0.365−0.0339i)T+(0.982−0.183i)T2 |
| 59 | 1+(0.932+0.361i)T2 |
| 61 | 1+(−0.0762−0.0521i)T+(0.361+0.932i)T2 |
| 67 | 1+(0.273−0.961i)T2 |
| 71 | 1+(−0.183−0.982i)T2 |
| 73 | 1+(0.352−1.49i)T+(−0.895−0.445i)T2 |
| 79 | 1+(0.961+0.273i)T2 |
| 83 | 1+(0.0922−0.995i)T2 |
| 89 | 1+(−1.48+0.576i)T+(0.739−0.673i)T2 |
| 97 | 1+(0.748+0.621i)T+(0.183+0.982i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.21935499940888942025973771617, −9.762593977150344847138138418787, −8.096228351774222616595616232390, −7.52257914605923706546861241910, −7.04309841285125537248997669176, −6.31276947355514285771174942542, −5.08259477077727639052495317671, −4.26149583129492170160781036040, −3.15422621956112565266401166439, −2.61054270770460349266109043411,
1.04121157962032752093557134549, 2.25235674811074659467623072174, 3.80775828342829547855740950117, 4.60560529532195168929351880555, 4.90828957427837386733795194153, 6.08058663990796720446572543242, 7.33087650887909444780417822621, 7.929799132200622901843788299782, 9.229669862935233361047810481994, 9.650610946266755469408015830769