L(s) = 1 | + (0.798 + 0.602i)2-s + (0.273 + 0.961i)4-s + (−0.739 + 1.67i)5-s + (−0.361 + 0.932i)8-s + (0.995 − 0.0922i)9-s + (−1.59 + 0.890i)10-s + (−1.85 − 0.719i)13-s + (−0.850 + 0.526i)16-s + (0.850 − 0.526i)17-s + (0.850 + 0.526i)18-s + (−1.81 − 0.252i)20-s + (−1.58 − 1.73i)25-s + (−1.04 − 1.69i)26-s + (1.11 + 0.621i)29-s + (−0.995 − 0.0922i)32-s + ⋯ |
L(s) = 1 | + (0.798 + 0.602i)2-s + (0.273 + 0.961i)4-s + (−0.739 + 1.67i)5-s + (−0.361 + 0.932i)8-s + (0.995 − 0.0922i)9-s + (−1.59 + 0.890i)10-s + (−1.85 − 0.719i)13-s + (−0.850 + 0.526i)16-s + (0.850 − 0.526i)17-s + (0.850 + 0.526i)18-s + (−1.81 − 0.252i)20-s + (−1.58 − 1.73i)25-s + (−1.04 − 1.69i)26-s + (1.11 + 0.621i)29-s + (−0.995 − 0.0922i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.624 - 0.781i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.624 - 0.781i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.402965593\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.402965593\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.798 - 0.602i)T \) |
| 17 | \( 1 + (-0.850 + 0.526i)T \) |
good | 3 | \( 1 + (-0.995 + 0.0922i)T^{2} \) |
| 5 | \( 1 + (0.739 - 1.67i)T + (-0.673 - 0.739i)T^{2} \) |
| 7 | \( 1 + (0.183 + 0.982i)T^{2} \) |
| 11 | \( 1 + (0.526 + 0.850i)T^{2} \) |
| 13 | \( 1 + (1.85 + 0.719i)T + (0.739 + 0.673i)T^{2} \) |
| 19 | \( 1 + (-0.273 + 0.961i)T^{2} \) |
| 23 | \( 1 + (0.183 + 0.982i)T^{2} \) |
| 29 | \( 1 + (-1.11 - 0.621i)T + (0.526 + 0.850i)T^{2} \) |
| 31 | \( 1 + (-0.673 + 0.739i)T^{2} \) |
| 37 | \( 1 + (-1.87 - 0.629i)T + (0.798 + 0.602i)T^{2} \) |
| 41 | \( 1 + (-0.0373 - 0.806i)T + (-0.995 + 0.0922i)T^{2} \) |
| 43 | \( 1 + (0.445 + 0.895i)T^{2} \) |
| 47 | \( 1 + (0.982 + 0.183i)T^{2} \) |
| 53 | \( 1 + (0.365 - 0.0339i)T + (0.982 - 0.183i)T^{2} \) |
| 59 | \( 1 + (0.932 + 0.361i)T^{2} \) |
| 61 | \( 1 + (-0.0762 - 0.0521i)T + (0.361 + 0.932i)T^{2} \) |
| 67 | \( 1 + (0.273 - 0.961i)T^{2} \) |
| 71 | \( 1 + (-0.183 - 0.982i)T^{2} \) |
| 73 | \( 1 + (0.352 - 1.49i)T + (-0.895 - 0.445i)T^{2} \) |
| 79 | \( 1 + (0.961 + 0.273i)T^{2} \) |
| 83 | \( 1 + (0.0922 - 0.995i)T^{2} \) |
| 89 | \( 1 + (-1.48 + 0.576i)T + (0.739 - 0.673i)T^{2} \) |
| 97 | \( 1 + (0.748 + 0.621i)T + (0.183 + 0.982i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.21935499940888942025973771617, −9.762593977150344847138138418787, −8.096228351774222616595616232390, −7.52257914605923706546861241910, −7.04309841285125537248997669176, −6.31276947355514285771174942542, −5.08259477077727639052495317671, −4.26149583129492170160781036040, −3.15422621956112565266401166439, −2.61054270770460349266109043411,
1.04121157962032752093557134549, 2.25235674811074659467623072174, 3.80775828342829547855740950117, 4.60560529532195168929351880555, 4.90828957427837386733795194153, 6.08058663990796720446572543242, 7.33087650887909444780417822621, 7.929799132200622901843788299782, 9.229669862935233361047810481994, 9.650610946266755469408015830769