L(s) = 1 | + (0.850 − 0.526i)2-s + (0.445 − 0.895i)4-s + (−1.98 − 0.183i)5-s + (−0.0922 − 0.995i)8-s + (−0.932 + 0.361i)9-s + (−1.78 + 0.887i)10-s + (−0.172 − 1.85i)13-s + (−0.602 − 0.798i)16-s + (−0.602 − 0.798i)17-s + (−0.602 + 0.798i)18-s + (−1.04 + 1.69i)20-s + (2.91 + 0.544i)25-s + (−1.12 − 1.48i)26-s + (−0.646 − 0.322i)29-s + (−0.932 − 0.361i)32-s + ⋯ |
L(s) = 1 | + (0.850 − 0.526i)2-s + (0.445 − 0.895i)4-s + (−1.98 − 0.183i)5-s + (−0.0922 − 0.995i)8-s + (−0.932 + 0.361i)9-s + (−1.78 + 0.887i)10-s + (−0.172 − 1.85i)13-s + (−0.602 − 0.798i)16-s + (−0.602 − 0.798i)17-s + (−0.602 + 0.798i)18-s + (−1.04 + 1.69i)20-s + (2.91 + 0.544i)25-s + (−1.12 − 1.48i)26-s + (−0.646 − 0.322i)29-s + (−0.932 − 0.361i)32-s + ⋯ |
Λ(s)=(=(1156s/2ΓC(s)L(s)(−0.887+0.460i)Λ(1−s)
Λ(s)=(=(1156s/2ΓC(s)L(s)(−0.887+0.460i)Λ(1−s)
Degree: |
2 |
Conductor: |
1156
= 22⋅172
|
Sign: |
−0.887+0.460i
|
Analytic conductor: |
0.576919 |
Root analytic conductor: |
0.759551 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1156(747,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1156, ( :0), −0.887+0.460i)
|
Particular Values
L(21) |
≈ |
0.8378846596 |
L(21) |
≈ |
0.8378846596 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.850+0.526i)T |
| 17 | 1+(0.602+0.798i)T |
good | 3 | 1+(0.932−0.361i)T2 |
| 5 | 1+(1.98+0.183i)T+(0.982+0.183i)T2 |
| 7 | 1+(0.739−0.673i)T2 |
| 11 | 1+(−0.602−0.798i)T2 |
| 13 | 1+(0.172+1.85i)T+(−0.982+0.183i)T2 |
| 19 | 1+(−0.445−0.895i)T2 |
| 23 | 1+(0.739−0.673i)T2 |
| 29 | 1+(0.646+0.322i)T+(0.602+0.798i)T2 |
| 31 | 1+(−0.982+0.183i)T2 |
| 37 | 1+(−1.01+0.288i)T+(0.850−0.526i)T2 |
| 41 | 1+(−0.365−1.95i)T+(−0.932+0.361i)T2 |
| 43 | 1+(0.273+0.961i)T2 |
| 47 | 1+(−0.739−0.673i)T2 |
| 53 | 1+(−1.37+0.533i)T+(0.739−0.673i)T2 |
| 59 | 1+(−0.0922−0.995i)T2 |
| 61 | 1+(0.247+0.271i)T+(−0.0922+0.995i)T2 |
| 67 | 1+(−0.445−0.895i)T2 |
| 71 | 1+(0.739−0.673i)T2 |
| 73 | 1+(−0.576+0.435i)T+(0.273−0.961i)T2 |
| 79 | 1+(0.445+0.895i)T2 |
| 83 | 1+(−0.932−0.361i)T2 |
| 89 | 1+(−0.156+1.69i)T+(−0.982−0.183i)T2 |
| 97 | 1+(0.646+1.66i)T+(−0.739+0.673i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.856489586531812806575103345194, −8.683405276725889810948310710926, −7.88210896094076673316739811203, −7.32373339080767102461169709476, −6.05458712102985994661277470431, −5.08071819873882782045442033978, −4.41177985844225435506453738981, −3.31560958462054778070525265224, −2.77201516152396707637811786059, −0.54864881468592047112449689459,
2.46460298854711158918327676560, 3.77820371680408745594077474261, 4.02314947690434786689823932411, 5.06457843295597270247734119611, 6.33739812708424034119789978613, 6.97125656628177057379997644457, 7.70661562925226833259022172991, 8.569493632648885459607317843118, 9.045390343664980299117188190740, 10.86703626645144183142887297186