L(s) = 1 | − 4.03e3·3-s + 1.63e4·4-s − 7.81e4·5-s + 8.23e5·7-s + 1.14e7·9-s − 3.73e7·11-s − 6.60e7·12-s − 6.52e7·13-s + 3.14e8·15-s + 2.68e8·16-s − 6.26e8·17-s − 1.28e9·20-s − 3.31e9·21-s + 6.10e9·25-s − 2.69e10·27-s + 1.34e10·28-s − 9.77e9·29-s + 1.50e11·33-s − 6.43e10·35-s + 1.87e11·36-s + 2.63e11·39-s − 6.12e11·44-s − 8.95e11·45-s + 7.19e11·47-s − 1.08e12·48-s + 6.78e11·49-s + 2.52e12·51-s + ⋯ |
L(s) = 1 | − 1.84·3-s + 4-s − 5-s + 7-s + 2.39·9-s − 1.91·11-s − 1.84·12-s − 1.04·13-s + 1.84·15-s + 16-s − 1.52·17-s − 20-s − 1.84·21-s + 25-s − 2.57·27-s + 28-s − 0.566·29-s + 3.53·33-s − 35-s + 2.39·36-s + 1.91·39-s − 1.91·44-s − 2.39·45-s + 1.41·47-s − 1.84·48-s + 49-s + 2.81·51-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(15-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+7) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{15}{2})\) |
\(\approx\) |
\(0.6742262541\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6742262541\) |
\(L(8)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + p^{7} T \) |
| 7 | \( 1 - p^{7} T \) |
good | 2 | \( ( 1 - p^{7} T )( 1 + p^{7} T ) \) |
| 3 | \( 1 + 4031 T + p^{14} T^{2} \) |
| 11 | \( 1 + 37379173 T + p^{14} T^{2} \) |
| 13 | \( 1 + 65279611 T + p^{14} T^{2} \) |
| 17 | \( 1 + 626193259 T + p^{14} T^{2} \) |
| 19 | \( ( 1 - p^{7} T )( 1 + p^{7} T ) \) |
| 23 | \( ( 1 - p^{7} T )( 1 + p^{7} T ) \) |
| 29 | \( 1 + 9775649497 T + p^{14} T^{2} \) |
| 31 | \( ( 1 - p^{7} T )( 1 + p^{7} T ) \) |
| 37 | \( ( 1 - p^{7} T )( 1 + p^{7} T ) \) |
| 41 | \( ( 1 - p^{7} T )( 1 + p^{7} T ) \) |
| 43 | \( ( 1 - p^{7} T )( 1 + p^{7} T ) \) |
| 47 | \( 1 - 719081600801 T + p^{14} T^{2} \) |
| 53 | \( ( 1 - p^{7} T )( 1 + p^{7} T ) \) |
| 59 | \( ( 1 - p^{7} T )( 1 + p^{7} T ) \) |
| 61 | \( ( 1 - p^{7} T )( 1 + p^{7} T ) \) |
| 67 | \( ( 1 - p^{7} T )( 1 + p^{7} T ) \) |
| 71 | \( 1 + 1790558995678 T + p^{14} T^{2} \) |
| 73 | \( 1 - 22033597628414 T + p^{14} T^{2} \) |
| 79 | \( 1 + 27088287440917 T + p^{14} T^{2} \) |
| 83 | \( 1 - 33726754263974 T + p^{14} T^{2} \) |
| 89 | \( ( 1 - p^{7} T )( 1 + p^{7} T ) \) |
| 97 | \( 1 - 24587561871581 T + p^{14} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.81367176693419316662452803125, −11.88708725905447863941086974382, −11.04132752258761870335179903948, −10.53337629463755670452170611552, −7.79593889223060756328125098792, −7.00571198815224154946053697200, −5.46090950274735549694275136357, −4.57422691880178032150636073767, −2.22167805915023482748799310195, −0.49700816852481171872775415272,
0.49700816852481171872775415272, 2.22167805915023482748799310195, 4.57422691880178032150636073767, 5.46090950274735549694275136357, 7.00571198815224154946053697200, 7.79593889223060756328125098792, 10.53337629463755670452170611552, 11.04132752258761870335179903948, 11.88708725905447863941086974382, 12.81367176693419316662452803125