L(s) = 1 | − 2.85i·2-s + 8.98i·3-s − 0.149·4-s + (3.91 + 10.4i)5-s + 25.6·6-s − 7i·7-s − 22.4i·8-s − 53.7·9-s + (29.8 − 11.1i)10-s + 37.4·11-s − 1.34i·12-s + 3.96i·13-s − 19.9·14-s + (−94.1 + 35.1i)15-s − 65.1·16-s − 51.6i·17-s + ⋯ |
L(s) = 1 | − 1.00i·2-s + 1.72i·3-s − 0.0186·4-s + (0.350 + 0.936i)5-s + 1.74·6-s − 0.377i·7-s − 0.990i·8-s − 1.99·9-s + (0.945 − 0.353i)10-s + 1.02·11-s − 0.0323i·12-s + 0.0845i·13-s − 0.381·14-s + (−1.62 + 0.605i)15-s − 1.01·16-s − 0.737i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.936 - 0.350i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.936 - 0.350i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.37680 + 0.248815i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.37680 + 0.248815i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-3.91 - 10.4i)T \) |
| 7 | \( 1 + 7iT \) |
good | 2 | \( 1 + 2.85iT - 8T^{2} \) |
| 3 | \( 1 - 8.98iT - 27T^{2} \) |
| 11 | \( 1 - 37.4T + 1.33e3T^{2} \) |
| 13 | \( 1 - 3.96iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 51.6iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 25.9T + 6.85e3T^{2} \) |
| 23 | \( 1 + 173. iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 245.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 172.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 250. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 48.8T + 6.89e4T^{2} \) |
| 43 | \( 1 + 143. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 36.6iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 645. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 395.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 47.5T + 2.26e5T^{2} \) |
| 67 | \( 1 + 263. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 268.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 199. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 473.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 72.7iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 1.55e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 243. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.06418001521645574326388405998, −14.93267070395509462269917137404, −13.97892688085318051312936060369, −11.92666315944695374324554192817, −10.83289901814441688068043380179, −10.23187880000332303284283992052, −9.182825031358158407379066449435, −6.55994999106142210774195079676, −4.30714501789098188166159705951, −2.98076640308672458033676084715,
1.71206031548227360801783289559, 5.64469708272380312089097318148, 6.62427752833086544809290263495, 7.909193556108086655952456576709, 8.914582456436068444159659952729, 11.59304126209408904767648962306, 12.52749823171013498060698068997, 13.63588328735384069902061337289, 14.67336157538052013347106803824, 16.19226496158436284458340390415