L(s) = 1 | + (3.33 + 5.77i)2-s + (2.41 + 1.39i)3-s + (−14.2 + 24.5i)4-s + (9.68 − 5.59i)5-s + 18.5i·6-s + (−7.25 + 48.4i)7-s − 82.6·8-s + (−36.6 − 63.4i)9-s + (64.5 + 37.2i)10-s + (100. − 174. i)11-s + (−68.4 + 39.5i)12-s + 86.0i·13-s + (−303. + 119. i)14-s + 31.1·15-s + (−48.1 − 83.3i)16-s + (248. + 143. i)17-s + ⋯ |
L(s) = 1 | + (0.832 + 1.44i)2-s + (0.267 + 0.154i)3-s + (−0.887 + 1.53i)4-s + (0.387 − 0.223i)5-s + 0.515i·6-s + (−0.147 + 0.988i)7-s − 1.29·8-s + (−0.452 − 0.783i)9-s + (0.645 + 0.372i)10-s + (0.834 − 1.44i)11-s + (−0.475 + 0.274i)12-s + 0.509i·13-s + (−1.55 + 0.610i)14-s + 0.138·15-s + (−0.187 − 0.325i)16-s + (0.859 + 0.496i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.481 - 0.876i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.481 - 0.876i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(1.15653 + 1.95373i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.15653 + 1.95373i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-9.68 + 5.59i)T \) |
| 7 | \( 1 + (7.25 - 48.4i)T \) |
good | 2 | \( 1 + (-3.33 - 5.77i)T + (-8 + 13.8i)T^{2} \) |
| 3 | \( 1 + (-2.41 - 1.39i)T + (40.5 + 70.1i)T^{2} \) |
| 11 | \( 1 + (-100. + 174. i)T + (-7.32e3 - 1.26e4i)T^{2} \) |
| 13 | \( 1 - 86.0iT - 2.85e4T^{2} \) |
| 17 | \( 1 + (-248. - 143. i)T + (4.17e4 + 7.23e4i)T^{2} \) |
| 19 | \( 1 + (-98.7 + 56.9i)T + (6.51e4 - 1.12e5i)T^{2} \) |
| 23 | \( 1 + (200. + 347. i)T + (-1.39e5 + 2.42e5i)T^{2} \) |
| 29 | \( 1 + 151.T + 7.07e5T^{2} \) |
| 31 | \( 1 + (1.28e3 + 740. i)T + (4.61e5 + 7.99e5i)T^{2} \) |
| 37 | \( 1 + (516. + 894. i)T + (-9.37e5 + 1.62e6i)T^{2} \) |
| 41 | \( 1 - 940. iT - 2.82e6T^{2} \) |
| 43 | \( 1 - 60.1T + 3.41e6T^{2} \) |
| 47 | \( 1 + (3.72e3 - 2.14e3i)T + (2.43e6 - 4.22e6i)T^{2} \) |
| 53 | \( 1 + (-1.71e3 + 2.97e3i)T + (-3.94e6 - 6.83e6i)T^{2} \) |
| 59 | \( 1 + (-4.83e3 - 2.78e3i)T + (6.05e6 + 1.04e7i)T^{2} \) |
| 61 | \( 1 + (1.24e3 - 717. i)T + (6.92e6 - 1.19e7i)T^{2} \) |
| 67 | \( 1 + (-1.01e3 + 1.75e3i)T + (-1.00e7 - 1.74e7i)T^{2} \) |
| 71 | \( 1 + 8.25e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + (-7.87e3 - 4.54e3i)T + (1.41e7 + 2.45e7i)T^{2} \) |
| 79 | \( 1 + (-2.64e3 - 4.58e3i)T + (-1.94e7 + 3.37e7i)T^{2} \) |
| 83 | \( 1 + 3.23e3iT - 4.74e7T^{2} \) |
| 89 | \( 1 + (-6.89e3 + 3.97e3i)T + (3.13e7 - 5.43e7i)T^{2} \) |
| 97 | \( 1 - 5.79e3iT - 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.13670375960793638881746702564, −14.74089943973150428631012345946, −14.30347772718186736487734126391, −12.96796228575782221590839630810, −11.70734727895438615604905697734, −9.235210870377283735809557040799, −8.344881109494949784972002977507, −6.38095047251014269062358847155, −5.61603430259919156553137010710, −3.61165251499963073820432667214,
1.72066038085334051954653111446, 3.48858708394510733842092799831, 5.11062561313551840998124003142, 7.36006147706278070054925864564, 9.675182041306324421062806586483, 10.52251388092492710489470815025, 11.80682149695595271801085188887, 12.97111094144581961424135641443, 13.92917235426441788034547142504, 14.65714013703259804218002385162