Properties

Label 2-350-1.1-c3-0-14
Degree $2$
Conductor $350$
Sign $1$
Analytic cond. $20.6506$
Root an. cond. $4.54430$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 10·3-s + 4·4-s − 20·6-s + 7·7-s − 8·8-s + 73·9-s + 9·11-s + 40·12-s − 52·13-s − 14·14-s + 16·16-s + 96·17-s − 146·18-s − 10·19-s + 70·21-s − 18·22-s + 75·23-s − 80·24-s + 104·26-s + 460·27-s + 28·28-s + 189·29-s − 232·31-s − 32·32-s + 90·33-s − 192·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.92·3-s + 1/2·4-s − 1.36·6-s + 0.377·7-s − 0.353·8-s + 2.70·9-s + 0.246·11-s + 0.962·12-s − 1.10·13-s − 0.267·14-s + 1/4·16-s + 1.36·17-s − 1.91·18-s − 0.120·19-s + 0.727·21-s − 0.174·22-s + 0.679·23-s − 0.680·24-s + 0.784·26-s + 3.27·27-s + 0.188·28-s + 1.21·29-s − 1.34·31-s − 0.176·32-s + 0.474·33-s − 0.968·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350\)    =    \(2 \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(20.6506\)
Root analytic conductor: \(4.54430\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 350,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.949626749\)
\(L(\frac12)\) \(\approx\) \(2.949626749\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T \)
5 \( 1 \)
7 \( 1 - p T \)
good3 \( 1 - 10 T + p^{3} T^{2} \)
11 \( 1 - 9 T + p^{3} T^{2} \)
13 \( 1 + 4 p T + p^{3} T^{2} \)
17 \( 1 - 96 T + p^{3} T^{2} \)
19 \( 1 + 10 T + p^{3} T^{2} \)
23 \( 1 - 75 T + p^{3} T^{2} \)
29 \( 1 - 189 T + p^{3} T^{2} \)
31 \( 1 + 232 T + p^{3} T^{2} \)
37 \( 1 - 305 T + p^{3} T^{2} \)
41 \( 1 + 438 T + p^{3} T^{2} \)
43 \( 1 - 353 T + p^{3} T^{2} \)
47 \( 1 + 486 T + p^{3} T^{2} \)
53 \( 1 + 354 T + p^{3} T^{2} \)
59 \( 1 + 672 T + p^{3} T^{2} \)
61 \( 1 - 206 T + p^{3} T^{2} \)
67 \( 1 - 599 T + p^{3} T^{2} \)
71 \( 1 + 471 T + p^{3} T^{2} \)
73 \( 1 - 614 T + p^{3} T^{2} \)
79 \( 1 - 743 T + p^{3} T^{2} \)
83 \( 1 - 12 p T + p^{3} T^{2} \)
89 \( 1 - 180 T + p^{3} T^{2} \)
97 \( 1 + 184 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.67578773904240973083378679362, −9.705693592679979661925070429855, −9.277967185900813285411063317474, −8.164895386292406078619635083769, −7.72407337362098831928992378282, −6.78031007921562599657583235141, −4.88311035495610326508509429800, −3.49389185098859385609006115477, −2.53173862327978090215295081586, −1.35664056388397445209219995392, 1.35664056388397445209219995392, 2.53173862327978090215295081586, 3.49389185098859385609006115477, 4.88311035495610326508509429800, 6.78031007921562599657583235141, 7.72407337362098831928992378282, 8.164895386292406078619635083769, 9.277967185900813285411063317474, 9.705693592679979661925070429855, 10.67578773904240973083378679362

Graph of the $Z$-function along the critical line