L(s) = 1 | − 2·2-s + 10·3-s + 4·4-s − 20·6-s + 7·7-s − 8·8-s + 73·9-s + 9·11-s + 40·12-s − 52·13-s − 14·14-s + 16·16-s + 96·17-s − 146·18-s − 10·19-s + 70·21-s − 18·22-s + 75·23-s − 80·24-s + 104·26-s + 460·27-s + 28·28-s + 189·29-s − 232·31-s − 32·32-s + 90·33-s − 192·34-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.92·3-s + 1/2·4-s − 1.36·6-s + 0.377·7-s − 0.353·8-s + 2.70·9-s + 0.246·11-s + 0.962·12-s − 1.10·13-s − 0.267·14-s + 1/4·16-s + 1.36·17-s − 1.91·18-s − 0.120·19-s + 0.727·21-s − 0.174·22-s + 0.679·23-s − 0.680·24-s + 0.784·26-s + 3.27·27-s + 0.188·28-s + 1.21·29-s − 1.34·31-s − 0.176·32-s + 0.474·33-s − 0.968·34-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(350s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.949626749 |
L(21) |
≈ |
2.949626749 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+pT |
| 5 | 1 |
| 7 | 1−pT |
good | 3 | 1−10T+p3T2 |
| 11 | 1−9T+p3T2 |
| 13 | 1+4pT+p3T2 |
| 17 | 1−96T+p3T2 |
| 19 | 1+10T+p3T2 |
| 23 | 1−75T+p3T2 |
| 29 | 1−189T+p3T2 |
| 31 | 1+232T+p3T2 |
| 37 | 1−305T+p3T2 |
| 41 | 1+438T+p3T2 |
| 43 | 1−353T+p3T2 |
| 47 | 1+486T+p3T2 |
| 53 | 1+354T+p3T2 |
| 59 | 1+672T+p3T2 |
| 61 | 1−206T+p3T2 |
| 67 | 1−599T+p3T2 |
| 71 | 1+471T+p3T2 |
| 73 | 1−614T+p3T2 |
| 79 | 1−743T+p3T2 |
| 83 | 1−12pT+p3T2 |
| 89 | 1−180T+p3T2 |
| 97 | 1+184T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.67578773904240973083378679362, −9.705693592679979661925070429855, −9.277967185900813285411063317474, −8.164895386292406078619635083769, −7.72407337362098831928992378282, −6.78031007921562599657583235141, −4.88311035495610326508509429800, −3.49389185098859385609006115477, −2.53173862327978090215295081586, −1.35664056388397445209219995392,
1.35664056388397445209219995392, 2.53173862327978090215295081586, 3.49389185098859385609006115477, 4.88311035495610326508509429800, 6.78031007921562599657583235141, 7.72407337362098831928992378282, 8.164895386292406078619635083769, 9.277967185900813285411063317474, 9.705693592679979661925070429855, 10.67578773904240973083378679362