Properties

Label 2-350-1.1-c3-0-18
Degree $2$
Conductor $350$
Sign $1$
Analytic cond. $20.6506$
Root an. cond. $4.54430$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 8·3-s + 4·4-s + 16·6-s + 7·7-s + 8·8-s + 37·9-s + 68·11-s + 32·12-s − 34·13-s + 14·14-s + 16·16-s − 74·17-s + 74·18-s − 128·19-s + 56·21-s + 136·22-s + 80·23-s + 64·24-s − 68·26-s + 80·27-s + 28·28-s + 286·29-s − 24·31-s + 32·32-s + 544·33-s − 148·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.53·3-s + 1/2·4-s + 1.08·6-s + 0.377·7-s + 0.353·8-s + 1.37·9-s + 1.86·11-s + 0.769·12-s − 0.725·13-s + 0.267·14-s + 1/4·16-s − 1.05·17-s + 0.968·18-s − 1.54·19-s + 0.581·21-s + 1.31·22-s + 0.725·23-s + 0.544·24-s − 0.512·26-s + 0.570·27-s + 0.188·28-s + 1.83·29-s − 0.139·31-s + 0.176·32-s + 2.86·33-s − 0.746·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350\)    =    \(2 \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(20.6506\)
Root analytic conductor: \(4.54430\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 350,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.211480454\)
\(L(\frac12)\) \(\approx\) \(5.211480454\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
5 \( 1 \)
7 \( 1 - p T \)
good3 \( 1 - 8 T + p^{3} T^{2} \)
11 \( 1 - 68 T + p^{3} T^{2} \)
13 \( 1 + 34 T + p^{3} T^{2} \)
17 \( 1 + 74 T + p^{3} T^{2} \)
19 \( 1 + 128 T + p^{3} T^{2} \)
23 \( 1 - 80 T + p^{3} T^{2} \)
29 \( 1 - 286 T + p^{3} T^{2} \)
31 \( 1 + 24 T + p^{3} T^{2} \)
37 \( 1 + 294 T + p^{3} T^{2} \)
41 \( 1 - 66 T + p^{3} T^{2} \)
43 \( 1 - 124 T + p^{3} T^{2} \)
47 \( 1 + 312 T + p^{3} T^{2} \)
53 \( 1 - 34 T + p^{3} T^{2} \)
59 \( 1 - 168 T + p^{3} T^{2} \)
61 \( 1 - 170 T + p^{3} T^{2} \)
67 \( 1 + 564 T + p^{3} T^{2} \)
71 \( 1 - 616 T + p^{3} T^{2} \)
73 \( 1 + 250 T + p^{3} T^{2} \)
79 \( 1 + 944 T + p^{3} T^{2} \)
83 \( 1 + 672 T + p^{3} T^{2} \)
89 \( 1 + 1430 T + p^{3} T^{2} \)
97 \( 1 - 1270 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.18955576209801152537373407883, −10.02646495774156413541411468570, −8.899232880691086136442173117246, −8.500200986133607446452526270200, −7.13494435573915775696510398238, −6.45702957381836343965251844849, −4.64206236789129304092287574140, −3.94117041102020446291137735244, −2.71686229643575911675709249989, −1.67080333129789026443695544768, 1.67080333129789026443695544768, 2.71686229643575911675709249989, 3.94117041102020446291137735244, 4.64206236789129304092287574140, 6.45702957381836343965251844849, 7.13494435573915775696510398238, 8.500200986133607446452526270200, 8.899232880691086136442173117246, 10.02646495774156413541411468570, 11.18955576209801152537373407883

Graph of the $Z$-function along the critical line