L(s) = 1 | + 2·2-s + 8·3-s + 4·4-s + 16·6-s + 7·7-s + 8·8-s + 37·9-s + 68·11-s + 32·12-s − 34·13-s + 14·14-s + 16·16-s − 74·17-s + 74·18-s − 128·19-s + 56·21-s + 136·22-s + 80·23-s + 64·24-s − 68·26-s + 80·27-s + 28·28-s + 286·29-s − 24·31-s + 32·32-s + 544·33-s − 148·34-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.53·3-s + 1/2·4-s + 1.08·6-s + 0.377·7-s + 0.353·8-s + 1.37·9-s + 1.86·11-s + 0.769·12-s − 0.725·13-s + 0.267·14-s + 1/4·16-s − 1.05·17-s + 0.968·18-s − 1.54·19-s + 0.581·21-s + 1.31·22-s + 0.725·23-s + 0.544·24-s − 0.512·26-s + 0.570·27-s + 0.188·28-s + 1.83·29-s − 0.139·31-s + 0.176·32-s + 2.86·33-s − 0.746·34-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(350s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
5.211480454 |
L(21) |
≈ |
5.211480454 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−pT |
| 5 | 1 |
| 7 | 1−pT |
good | 3 | 1−8T+p3T2 |
| 11 | 1−68T+p3T2 |
| 13 | 1+34T+p3T2 |
| 17 | 1+74T+p3T2 |
| 19 | 1+128T+p3T2 |
| 23 | 1−80T+p3T2 |
| 29 | 1−286T+p3T2 |
| 31 | 1+24T+p3T2 |
| 37 | 1+294T+p3T2 |
| 41 | 1−66T+p3T2 |
| 43 | 1−124T+p3T2 |
| 47 | 1+312T+p3T2 |
| 53 | 1−34T+p3T2 |
| 59 | 1−168T+p3T2 |
| 61 | 1−170T+p3T2 |
| 67 | 1+564T+p3T2 |
| 71 | 1−616T+p3T2 |
| 73 | 1+250T+p3T2 |
| 79 | 1+944T+p3T2 |
| 83 | 1+672T+p3T2 |
| 89 | 1+1430T+p3T2 |
| 97 | 1−1270T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.18955576209801152537373407883, −10.02646495774156413541411468570, −8.899232880691086136442173117246, −8.500200986133607446452526270200, −7.13494435573915775696510398238, −6.45702957381836343965251844849, −4.64206236789129304092287574140, −3.94117041102020446291137735244, −2.71686229643575911675709249989, −1.67080333129789026443695544768,
1.67080333129789026443695544768, 2.71686229643575911675709249989, 3.94117041102020446291137735244, 4.64206236789129304092287574140, 6.45702957381836343965251844849, 7.13494435573915775696510398238, 8.500200986133607446452526270200, 8.899232880691086136442173117246, 10.02646495774156413541411468570, 11.18955576209801152537373407883