Properties

Label 2-350-1.1-c3-0-24
Degree $2$
Conductor $350$
Sign $-1$
Analytic cond. $20.6506$
Root an. cond. $4.54430$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 2·3-s + 4·4-s − 4·6-s + 7·7-s + 8·8-s − 23·9-s − 27·11-s − 8·12-s − 64·13-s + 14·14-s + 16·16-s − 24·17-s − 46·18-s + 62·19-s − 14·21-s − 54·22-s − 105·23-s − 16·24-s − 128·26-s + 100·27-s + 28·28-s + 141·29-s − 124·31-s + 32·32-s + 54·33-s − 48·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.384·3-s + 1/2·4-s − 0.272·6-s + 0.377·7-s + 0.353·8-s − 0.851·9-s − 0.740·11-s − 0.192·12-s − 1.36·13-s + 0.267·14-s + 1/4·16-s − 0.342·17-s − 0.602·18-s + 0.748·19-s − 0.145·21-s − 0.523·22-s − 0.951·23-s − 0.136·24-s − 0.965·26-s + 0.712·27-s + 0.188·28-s + 0.902·29-s − 0.718·31-s + 0.176·32-s + 0.284·33-s − 0.242·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350\)    =    \(2 \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(20.6506\)
Root analytic conductor: \(4.54430\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 350,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
5 \( 1 \)
7 \( 1 - p T \)
good3 \( 1 + 2 T + p^{3} T^{2} \)
11 \( 1 + 27 T + p^{3} T^{2} \)
13 \( 1 + 64 T + p^{3} T^{2} \)
17 \( 1 + 24 T + p^{3} T^{2} \)
19 \( 1 - 62 T + p^{3} T^{2} \)
23 \( 1 + 105 T + p^{3} T^{2} \)
29 \( 1 - 141 T + p^{3} T^{2} \)
31 \( 1 + 4 p T + p^{3} T^{2} \)
37 \( 1 + 439 T + p^{3} T^{2} \)
41 \( 1 + 354 T + p^{3} T^{2} \)
43 \( 1 + 211 T + p^{3} T^{2} \)
47 \( 1 + 102 T + p^{3} T^{2} \)
53 \( 1 + 306 T + p^{3} T^{2} \)
59 \( 1 - 348 T + p^{3} T^{2} \)
61 \( 1 - 410 T + p^{3} T^{2} \)
67 \( 1 + 349 T + p^{3} T^{2} \)
71 \( 1 + 339 T + p^{3} T^{2} \)
73 \( 1 + 70 T + p^{3} T^{2} \)
79 \( 1 - 731 T + p^{3} T^{2} \)
83 \( 1 - 528 T + p^{3} T^{2} \)
89 \( 1 - 960 T + p^{3} T^{2} \)
97 \( 1 - 1340 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.72367931748491725863492697064, −9.957465382211928028194531353597, −8.581241143215200589896359862162, −7.61430756385968017626171761744, −6.59743794219498824053514858249, −5.35615931614493167224466805079, −4.89727512665841417714669115349, −3.30556592802394084313675880243, −2.11853378601643820747991158462, 0, 2.11853378601643820747991158462, 3.30556592802394084313675880243, 4.89727512665841417714669115349, 5.35615931614493167224466805079, 6.59743794219498824053514858249, 7.61430756385968017626171761744, 8.581241143215200589896359862162, 9.957465382211928028194531353597, 10.72367931748491725863492697064

Graph of the $Z$-function along the critical line