Properties

Label 2-350-1.1-c5-0-0
Degree $2$
Conductor $350$
Sign $1$
Analytic cond. $56.1343$
Root an. cond. $7.49228$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 7.77·3-s + 16·4-s + 31.1·6-s − 49·7-s − 64·8-s − 182.·9-s − 588.·11-s − 124.·12-s − 147.·13-s + 196·14-s + 256·16-s − 63.1·17-s + 730.·18-s − 1.61e3·19-s + 381.·21-s + 2.35e3·22-s + 1.48e3·23-s + 497.·24-s + 590.·26-s + 3.30e3·27-s − 784·28-s − 1.69e3·29-s − 7.44e3·31-s − 1.02e3·32-s + 4.57e3·33-s + 252.·34-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.498·3-s + 0.5·4-s + 0.352·6-s − 0.377·7-s − 0.353·8-s − 0.751·9-s − 1.46·11-s − 0.249·12-s − 0.242·13-s + 0.267·14-s + 0.250·16-s − 0.0530·17-s + 0.531·18-s − 1.02·19-s + 0.188·21-s + 1.03·22-s + 0.585·23-s + 0.176·24-s + 0.171·26-s + 0.873·27-s − 0.188·28-s − 0.373·29-s − 1.39·31-s − 0.176·32-s + 0.731·33-s + 0.0374·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350\)    =    \(2 \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(56.1343\)
Root analytic conductor: \(7.49228\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 350,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.3397311837\)
\(L(\frac12)\) \(\approx\) \(0.3397311837\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
5 \( 1 \)
7 \( 1 + 49T \)
good3 \( 1 + 7.77T + 243T^{2} \)
11 \( 1 + 588.T + 1.61e5T^{2} \)
13 \( 1 + 147.T + 3.71e5T^{2} \)
17 \( 1 + 63.1T + 1.41e6T^{2} \)
19 \( 1 + 1.61e3T + 2.47e6T^{2} \)
23 \( 1 - 1.48e3T + 6.43e6T^{2} \)
29 \( 1 + 1.69e3T + 2.05e7T^{2} \)
31 \( 1 + 7.44e3T + 2.86e7T^{2} \)
37 \( 1 + 2.43e3T + 6.93e7T^{2} \)
41 \( 1 - 334.T + 1.15e8T^{2} \)
43 \( 1 + 1.19e4T + 1.47e8T^{2} \)
47 \( 1 - 5.86e3T + 2.29e8T^{2} \)
53 \( 1 + 2.50e4T + 4.18e8T^{2} \)
59 \( 1 + 5.23e4T + 7.14e8T^{2} \)
61 \( 1 - 1.68e4T + 8.44e8T^{2} \)
67 \( 1 - 6.90e4T + 1.35e9T^{2} \)
71 \( 1 - 3.05e4T + 1.80e9T^{2} \)
73 \( 1 - 4.61e4T + 2.07e9T^{2} \)
79 \( 1 + 1.86e3T + 3.07e9T^{2} \)
83 \( 1 + 1.06e5T + 3.93e9T^{2} \)
89 \( 1 + 3.82e4T + 5.58e9T^{2} \)
97 \( 1 - 9.07e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.77660990074949290357877825893, −9.797621027459837193170485978171, −8.776625447618634591824818280420, −7.938149967772523902785291675540, −6.90064993649223603580672891589, −5.86432042534986802348517008795, −4.97687701048653956017438682014, −3.23069299962421065946795879124, −2.12672100287617238692924190592, −0.33790409625047817465841841411, 0.33790409625047817465841841411, 2.12672100287617238692924190592, 3.23069299962421065946795879124, 4.97687701048653956017438682014, 5.86432042534986802348517008795, 6.90064993649223603580672891589, 7.938149967772523902785291675540, 8.776625447618634591824818280420, 9.797621027459837193170485978171, 10.77660990074949290357877825893

Graph of the $Z$-function along the critical line