Properties

Label 2-350-1.1-c7-0-55
Degree $2$
Conductor $350$
Sign $-1$
Analytic cond. $109.334$
Root an. cond. $10.4563$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 63·3-s + 64·4-s − 504·6-s − 343·7-s − 512·8-s + 1.78e3·9-s − 2.72e3·11-s + 4.03e3·12-s − 5.26e3·13-s + 2.74e3·14-s + 4.09e3·16-s + 1.77e4·17-s − 1.42e4·18-s + 712·19-s − 2.16e4·21-s + 2.18e4·22-s + 2.93e4·23-s − 3.22e4·24-s + 4.21e4·26-s − 2.55e4·27-s − 2.19e4·28-s + 6.84e4·29-s + 1.85e5·31-s − 3.27e4·32-s − 1.71e5·33-s − 1.41e5·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.34·3-s + 1/2·4-s − 0.952·6-s − 0.377·7-s − 0.353·8-s + 0.814·9-s − 0.617·11-s + 0.673·12-s − 0.665·13-s + 0.267·14-s + 1/4·16-s + 0.873·17-s − 0.576·18-s + 0.0238·19-s − 0.509·21-s + 0.436·22-s + 0.502·23-s − 0.476·24-s + 0.470·26-s − 0.249·27-s − 0.188·28-s + 0.521·29-s + 1.11·31-s − 0.176·32-s − 0.832·33-s − 0.617·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350\)    =    \(2 \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(109.334\)
Root analytic conductor: \(10.4563\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 350,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{3} T \)
5 \( 1 \)
7 \( 1 + p^{3} T \)
good3 \( 1 - 7 p^{2} T + p^{7} T^{2} \)
11 \( 1 + 2727 T + p^{7} T^{2} \)
13 \( 1 + 5269 T + p^{7} T^{2} \)
17 \( 1 - 17701 T + p^{7} T^{2} \)
19 \( 1 - 712 T + p^{7} T^{2} \)
23 \( 1 - 29330 T + p^{7} T^{2} \)
29 \( 1 - 68491 T + p^{7} T^{2} \)
31 \( 1 - 185026 T + p^{7} T^{2} \)
37 \( 1 - 6758 p T + p^{7} T^{2} \)
41 \( 1 + 125814 T + p^{7} T^{2} \)
43 \( 1 + 747476 T + p^{7} T^{2} \)
47 \( 1 + 317317 T + p^{7} T^{2} \)
53 \( 1 + 1623246 T + p^{7} T^{2} \)
59 \( 1 + 1519262 T + p^{7} T^{2} \)
61 \( 1 + 54240 p T + p^{7} T^{2} \)
67 \( 1 - 2272366 T + p^{7} T^{2} \)
71 \( 1 + 4963104 T + p^{7} T^{2} \)
73 \( 1 + 2351750 T + p^{7} T^{2} \)
79 \( 1 + 2524249 T + p^{7} T^{2} \)
83 \( 1 + 6051492 T + p^{7} T^{2} \)
89 \( 1 - 8043880 T + p^{7} T^{2} \)
97 \( 1 - 2337645 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.744277142406022481958025357950, −8.869945153407033430357105451697, −8.020730222753910653890846736441, −7.43267196587194912865059910446, −6.22090412586055502684768309776, −4.78141411401163709592320028132, −3.23223147212647533760477151269, −2.69676092768815901449607449781, −1.45056700901309175751873594479, 0, 1.45056700901309175751873594479, 2.69676092768815901449607449781, 3.23223147212647533760477151269, 4.78141411401163709592320028132, 6.22090412586055502684768309776, 7.43267196587194912865059910446, 8.020730222753910653890846736441, 8.869945153407033430357105451697, 9.744277142406022481958025357950

Graph of the $Z$-function along the critical line