L(s) = 1 | − 8·2-s + 63·3-s + 64·4-s − 504·6-s − 343·7-s − 512·8-s + 1.78e3·9-s − 2.72e3·11-s + 4.03e3·12-s − 5.26e3·13-s + 2.74e3·14-s + 4.09e3·16-s + 1.77e4·17-s − 1.42e4·18-s + 712·19-s − 2.16e4·21-s + 2.18e4·22-s + 2.93e4·23-s − 3.22e4·24-s + 4.21e4·26-s − 2.55e4·27-s − 2.19e4·28-s + 6.84e4·29-s + 1.85e5·31-s − 3.27e4·32-s − 1.71e5·33-s − 1.41e5·34-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.34·3-s + 1/2·4-s − 0.952·6-s − 0.377·7-s − 0.353·8-s + 0.814·9-s − 0.617·11-s + 0.673·12-s − 0.665·13-s + 0.267·14-s + 1/4·16-s + 0.873·17-s − 0.576·18-s + 0.0238·19-s − 0.509·21-s + 0.436·22-s + 0.502·23-s − 0.476·24-s + 0.470·26-s − 0.249·27-s − 0.188·28-s + 0.521·29-s + 1.11·31-s − 0.176·32-s − 0.832·33-s − 0.617·34-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)−Λ(8−s)
Λ(s)=(=(350s/2ΓC(s+7/2)L(s)−Λ(1−s)
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+p3T |
| 5 | 1 |
| 7 | 1+p3T |
good | 3 | 1−7p2T+p7T2 |
| 11 | 1+2727T+p7T2 |
| 13 | 1+5269T+p7T2 |
| 17 | 1−17701T+p7T2 |
| 19 | 1−712T+p7T2 |
| 23 | 1−29330T+p7T2 |
| 29 | 1−68491T+p7T2 |
| 31 | 1−185026T+p7T2 |
| 37 | 1−6758pT+p7T2 |
| 41 | 1+125814T+p7T2 |
| 43 | 1+747476T+p7T2 |
| 47 | 1+317317T+p7T2 |
| 53 | 1+1623246T+p7T2 |
| 59 | 1+1519262T+p7T2 |
| 61 | 1+54240pT+p7T2 |
| 67 | 1−2272366T+p7T2 |
| 71 | 1+4963104T+p7T2 |
| 73 | 1+2351750T+p7T2 |
| 79 | 1+2524249T+p7T2 |
| 83 | 1+6051492T+p7T2 |
| 89 | 1−8043880T+p7T2 |
| 97 | 1−2337645T+p7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.744277142406022481958025357950, −8.869945153407033430357105451697, −8.020730222753910653890846736441, −7.43267196587194912865059910446, −6.22090412586055502684768309776, −4.78141411401163709592320028132, −3.23223147212647533760477151269, −2.69676092768815901449607449781, −1.45056700901309175751873594479, 0,
1.45056700901309175751873594479, 2.69676092768815901449607449781, 3.23223147212647533760477151269, 4.78141411401163709592320028132, 6.22090412586055502684768309776, 7.43267196587194912865059910446, 8.020730222753910653890846736441, 8.869945153407033430357105451697, 9.744277142406022481958025357950