Properties

Label 2-350-175.103-c1-0-11
Degree $2$
Conductor $350$
Sign $0.921 - 0.388i$
Analytic cond. $2.79476$
Root an. cond. $1.67175$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.998 + 0.0523i)2-s + (0.555 + 0.686i)3-s + (0.994 + 0.104i)4-s + (2.14 − 0.642i)5-s + (0.519 + 0.714i)6-s + (0.427 + 2.61i)7-s + (0.987 + 0.156i)8-s + (0.461 − 2.17i)9-s + (2.17 − 0.529i)10-s + (−3.71 + 0.789i)11-s + (0.480 + 0.740i)12-s + (−1.44 − 0.737i)13-s + (0.290 + 2.62i)14-s + (1.63 + 1.11i)15-s + (0.978 + 0.207i)16-s + (−2.38 − 6.21i)17-s + ⋯
L(s)  = 1  + (0.706 + 0.0370i)2-s + (0.320 + 0.396i)3-s + (0.497 + 0.0522i)4-s + (0.957 − 0.287i)5-s + (0.211 + 0.291i)6-s + (0.161 + 0.986i)7-s + (0.349 + 0.0553i)8-s + (0.153 − 0.723i)9-s + (0.686 − 0.167i)10-s + (−1.11 + 0.237i)11-s + (0.138 + 0.213i)12-s + (−0.401 − 0.204i)13-s + (0.0776 + 0.702i)14-s + (0.421 + 0.287i)15-s + (0.244 + 0.0519i)16-s + (−0.578 − 1.50i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.921 - 0.388i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.921 - 0.388i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350\)    =    \(2 \cdot 5^{2} \cdot 7\)
Sign: $0.921 - 0.388i$
Analytic conductor: \(2.79476\)
Root analytic conductor: \(1.67175\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{350} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 350,\ (\ :1/2),\ 0.921 - 0.388i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.37227 + 0.479328i\)
\(L(\frac12)\) \(\approx\) \(2.37227 + 0.479328i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.998 - 0.0523i)T \)
5 \( 1 + (-2.14 + 0.642i)T \)
7 \( 1 + (-0.427 - 2.61i)T \)
good3 \( 1 + (-0.555 - 0.686i)T + (-0.623 + 2.93i)T^{2} \)
11 \( 1 + (3.71 - 0.789i)T + (10.0 - 4.47i)T^{2} \)
13 \( 1 + (1.44 + 0.737i)T + (7.64 + 10.5i)T^{2} \)
17 \( 1 + (2.38 + 6.21i)T + (-12.6 + 11.3i)T^{2} \)
19 \( 1 + (-0.889 - 8.46i)T + (-18.5 + 3.95i)T^{2} \)
23 \( 1 + (-0.128 + 2.45i)T + (-22.8 - 2.40i)T^{2} \)
29 \( 1 + (3.41 - 4.69i)T + (-8.96 - 27.5i)T^{2} \)
31 \( 1 + (-2.15 + 4.84i)T + (-20.7 - 23.0i)T^{2} \)
37 \( 1 + (5.50 - 3.57i)T + (15.0 - 33.8i)T^{2} \)
41 \( 1 + (-4.80 + 1.56i)T + (33.1 - 24.0i)T^{2} \)
43 \( 1 + (3.22 + 3.22i)T + 43iT^{2} \)
47 \( 1 + (3.04 + 1.16i)T + (34.9 + 31.4i)T^{2} \)
53 \( 1 + (6.74 - 5.46i)T + (11.0 - 51.8i)T^{2} \)
59 \( 1 + (0.404 - 0.448i)T + (-6.16 - 58.6i)T^{2} \)
61 \( 1 + (-8.88 + 8.00i)T + (6.37 - 60.6i)T^{2} \)
67 \( 1 + (1.26 - 0.486i)T + (49.7 - 44.8i)T^{2} \)
71 \( 1 + (10.6 + 7.74i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (-0.723 + 1.11i)T + (-29.6 - 66.6i)T^{2} \)
79 \( 1 + (-1.89 - 4.26i)T + (-52.8 + 58.7i)T^{2} \)
83 \( 1 + (-2.58 + 16.3i)T + (-78.9 - 25.6i)T^{2} \)
89 \( 1 + (-6.29 - 6.98i)T + (-9.30 + 88.5i)T^{2} \)
97 \( 1 + (-0.588 - 3.71i)T + (-92.2 + 29.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.86175717274142033411303293706, −10.48531200322558302508010178786, −9.724783509951492564769222750850, −8.922869055985382082121709224648, −7.77646486370257008871566782544, −6.44336485667945651472065919325, −5.47899360245567146460109744783, −4.77604397393338529361178644774, −3.16796375198277516727084060009, −2.12810983331789873564151860407, 1.84868099339633100750364573995, 2.91127964810471982508446928832, 4.50935251033707953430284243503, 5.42698678911136574837848538826, 6.69251242138219954106064540456, 7.40158875609741393253238426759, 8.451628434985618017128155396229, 9.846753397510883342245779891648, 10.70756912201733783483913025227, 11.18580419292840860236946381386

Graph of the $Z$-function along the critical line