L(s) = 1 | + (0.998 + 0.0523i)2-s + (0.555 + 0.686i)3-s + (0.994 + 0.104i)4-s + (2.14 − 0.642i)5-s + (0.519 + 0.714i)6-s + (0.427 + 2.61i)7-s + (0.987 + 0.156i)8-s + (0.461 − 2.17i)9-s + (2.17 − 0.529i)10-s + (−3.71 + 0.789i)11-s + (0.480 + 0.740i)12-s + (−1.44 − 0.737i)13-s + (0.290 + 2.62i)14-s + (1.63 + 1.11i)15-s + (0.978 + 0.207i)16-s + (−2.38 − 6.21i)17-s + ⋯ |
L(s) = 1 | + (0.706 + 0.0370i)2-s + (0.320 + 0.396i)3-s + (0.497 + 0.0522i)4-s + (0.957 − 0.287i)5-s + (0.211 + 0.291i)6-s + (0.161 + 0.986i)7-s + (0.349 + 0.0553i)8-s + (0.153 − 0.723i)9-s + (0.686 − 0.167i)10-s + (−1.11 + 0.237i)11-s + (0.138 + 0.213i)12-s + (−0.401 − 0.204i)13-s + (0.0776 + 0.702i)14-s + (0.421 + 0.287i)15-s + (0.244 + 0.0519i)16-s + (−0.578 − 1.50i)17-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)(0.921−0.388i)Λ(2−s)
Λ(s)=(=(350s/2ΓC(s+1/2)L(s)(0.921−0.388i)Λ(1−s)
Degree: |
2 |
Conductor: |
350
= 2⋅52⋅7
|
Sign: |
0.921−0.388i
|
Analytic conductor: |
2.79476 |
Root analytic conductor: |
1.67175 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ350(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 350, ( :1/2), 0.921−0.388i)
|
Particular Values
L(1) |
≈ |
2.37227+0.479328i |
L(21) |
≈ |
2.37227+0.479328i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.998−0.0523i)T |
| 5 | 1+(−2.14+0.642i)T |
| 7 | 1+(−0.427−2.61i)T |
good | 3 | 1+(−0.555−0.686i)T+(−0.623+2.93i)T2 |
| 11 | 1+(3.71−0.789i)T+(10.0−4.47i)T2 |
| 13 | 1+(1.44+0.737i)T+(7.64+10.5i)T2 |
| 17 | 1+(2.38+6.21i)T+(−12.6+11.3i)T2 |
| 19 | 1+(−0.889−8.46i)T+(−18.5+3.95i)T2 |
| 23 | 1+(−0.128+2.45i)T+(−22.8−2.40i)T2 |
| 29 | 1+(3.41−4.69i)T+(−8.96−27.5i)T2 |
| 31 | 1+(−2.15+4.84i)T+(−20.7−23.0i)T2 |
| 37 | 1+(5.50−3.57i)T+(15.0−33.8i)T2 |
| 41 | 1+(−4.80+1.56i)T+(33.1−24.0i)T2 |
| 43 | 1+(3.22+3.22i)T+43iT2 |
| 47 | 1+(3.04+1.16i)T+(34.9+31.4i)T2 |
| 53 | 1+(6.74−5.46i)T+(11.0−51.8i)T2 |
| 59 | 1+(0.404−0.448i)T+(−6.16−58.6i)T2 |
| 61 | 1+(−8.88+8.00i)T+(6.37−60.6i)T2 |
| 67 | 1+(1.26−0.486i)T+(49.7−44.8i)T2 |
| 71 | 1+(10.6+7.74i)T+(21.9+67.5i)T2 |
| 73 | 1+(−0.723+1.11i)T+(−29.6−66.6i)T2 |
| 79 | 1+(−1.89−4.26i)T+(−52.8+58.7i)T2 |
| 83 | 1+(−2.58+16.3i)T+(−78.9−25.6i)T2 |
| 89 | 1+(−6.29−6.98i)T+(−9.30+88.5i)T2 |
| 97 | 1+(−0.588−3.71i)T+(−92.2+29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.86175717274142033411303293706, −10.48531200322558302508010178786, −9.724783509951492564769222750850, −8.922869055985382082121709224648, −7.77646486370257008871566782544, −6.44336485667945651472065919325, −5.47899360245567146460109744783, −4.77604397393338529361178644774, −3.16796375198277516727084060009, −2.12810983331789873564151860407,
1.84868099339633100750364573995, 2.91127964810471982508446928832, 4.50935251033707953430284243503, 5.42698678911136574837848538826, 6.69251242138219954106064540456, 7.40158875609741393253238426759, 8.451628434985618017128155396229, 9.846753397510883342245779891648, 10.70756912201733783483913025227, 11.18580419292840860236946381386