L(s) = 1 | + (−0.0523 − 0.998i)2-s + (0.430 + 0.348i)3-s + (−0.994 + 0.104i)4-s + (2.13 − 0.656i)5-s + (0.325 − 0.448i)6-s + (−0.343 + 2.62i)7-s + (0.156 + 0.987i)8-s + (−0.559 − 2.63i)9-s + (−0.767 − 2.10i)10-s + (4.51 + 0.959i)11-s + (−0.464 − 0.301i)12-s + (−1.77 − 3.47i)13-s + (2.63 + 0.205i)14-s + (1.14 + 0.462i)15-s + (0.978 − 0.207i)16-s + (7.52 + 2.88i)17-s + ⋯ |
L(s) = 1 | + (−0.0370 − 0.706i)2-s + (0.248 + 0.201i)3-s + (−0.497 + 0.0522i)4-s + (0.955 − 0.293i)5-s + (0.132 − 0.182i)6-s + (−0.129 + 0.991i)7-s + (0.0553 + 0.349i)8-s + (−0.186 − 0.878i)9-s + (−0.242 − 0.664i)10-s + (1.36 + 0.289i)11-s + (−0.134 − 0.0870i)12-s + (−0.491 − 0.965i)13-s + (0.704 + 0.0548i)14-s + (0.296 + 0.119i)15-s + (0.244 − 0.0519i)16-s + (1.82 + 0.700i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.726 + 0.687i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.726 + 0.687i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.49301 - 0.594567i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.49301 - 0.594567i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.0523 + 0.998i)T \) |
| 5 | \( 1 + (-2.13 + 0.656i)T \) |
| 7 | \( 1 + (0.343 - 2.62i)T \) |
good | 3 | \( 1 + (-0.430 - 0.348i)T + (0.623 + 2.93i)T^{2} \) |
| 11 | \( 1 + (-4.51 - 0.959i)T + (10.0 + 4.47i)T^{2} \) |
| 13 | \( 1 + (1.77 + 3.47i)T + (-7.64 + 10.5i)T^{2} \) |
| 17 | \( 1 + (-7.52 - 2.88i)T + (12.6 + 11.3i)T^{2} \) |
| 19 | \( 1 + (0.203 - 1.93i)T + (-18.5 - 3.95i)T^{2} \) |
| 23 | \( 1 + (5.87 - 0.308i)T + (22.8 - 2.40i)T^{2} \) |
| 29 | \( 1 + (2.48 + 3.42i)T + (-8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (1.81 + 4.08i)T + (-20.7 + 23.0i)T^{2} \) |
| 37 | \( 1 + (0.822 - 1.26i)T + (-15.0 - 33.8i)T^{2} \) |
| 41 | \( 1 + (3.28 + 1.06i)T + (33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + (-6.54 - 6.54i)T + 43iT^{2} \) |
| 47 | \( 1 + (0.294 + 0.766i)T + (-34.9 + 31.4i)T^{2} \) |
| 53 | \( 1 + (7.12 - 8.79i)T + (-11.0 - 51.8i)T^{2} \) |
| 59 | \( 1 + (2.32 + 2.57i)T + (-6.16 + 58.6i)T^{2} \) |
| 61 | \( 1 + (1.38 + 1.24i)T + (6.37 + 60.6i)T^{2} \) |
| 67 | \( 1 + (3.59 - 9.36i)T + (-49.7 - 44.8i)T^{2} \) |
| 71 | \( 1 + (-2.57 + 1.87i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (6.54 - 4.25i)T + (29.6 - 66.6i)T^{2} \) |
| 79 | \( 1 + (3.15 - 7.09i)T + (-52.8 - 58.7i)T^{2} \) |
| 83 | \( 1 + (14.5 - 2.31i)T + (78.9 - 25.6i)T^{2} \) |
| 89 | \( 1 + (3.16 - 3.51i)T + (-9.30 - 88.5i)T^{2} \) |
| 97 | \( 1 + (5.61 + 0.888i)T + (92.2 + 29.9i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.59761415169156160138487601845, −10.00944407598257260351927797628, −9.756107104082823959105495707813, −8.918644257516669936586396839147, −7.933734962795924259742375959949, −6.11208786244167529587797425718, −5.64583094068120863465720873022, −4.03587042036957720794744171017, −2.90379927730270667713351728610, −1.49330699402693616914697273146,
1.61523826911282662026086092630, 3.42550679629079010179243523821, 4.79341112408202053453901081830, 5.91859916135748504339443442480, 6.95402644179543868360973918169, 7.53513298283991619873806789022, 8.844617734407687306871085189233, 9.665928035416991291547415355027, 10.41982248204371547475236158309, 11.57754010322994693506356095547