L(s) = 1 | + (−0.0523 − 0.998i)2-s + (0.430 + 0.348i)3-s + (−0.994 + 0.104i)4-s + (2.13 − 0.656i)5-s + (0.325 − 0.448i)6-s + (−0.343 + 2.62i)7-s + (0.156 + 0.987i)8-s + (−0.559 − 2.63i)9-s + (−0.767 − 2.10i)10-s + (4.51 + 0.959i)11-s + (−0.464 − 0.301i)12-s + (−1.77 − 3.47i)13-s + (2.63 + 0.205i)14-s + (1.14 + 0.462i)15-s + (0.978 − 0.207i)16-s + (7.52 + 2.88i)17-s + ⋯ |
L(s) = 1 | + (−0.0370 − 0.706i)2-s + (0.248 + 0.201i)3-s + (−0.497 + 0.0522i)4-s + (0.955 − 0.293i)5-s + (0.132 − 0.182i)6-s + (−0.129 + 0.991i)7-s + (0.0553 + 0.349i)8-s + (−0.186 − 0.878i)9-s + (−0.242 − 0.664i)10-s + (1.36 + 0.289i)11-s + (−0.134 − 0.0870i)12-s + (−0.491 − 0.965i)13-s + (0.704 + 0.0548i)14-s + (0.296 + 0.119i)15-s + (0.244 − 0.0519i)16-s + (1.82 + 0.700i)17-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)(0.726+0.687i)Λ(2−s)
Λ(s)=(=(350s/2ΓC(s+1/2)L(s)(0.726+0.687i)Λ(1−s)
Degree: |
2 |
Conductor: |
350
= 2⋅52⋅7
|
Sign: |
0.726+0.687i
|
Analytic conductor: |
2.79476 |
Root analytic conductor: |
1.67175 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ350(283,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 350, ( :1/2), 0.726+0.687i)
|
Particular Values
L(1) |
≈ |
1.49301−0.594567i |
L(21) |
≈ |
1.49301−0.594567i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.0523+0.998i)T |
| 5 | 1+(−2.13+0.656i)T |
| 7 | 1+(0.343−2.62i)T |
good | 3 | 1+(−0.430−0.348i)T+(0.623+2.93i)T2 |
| 11 | 1+(−4.51−0.959i)T+(10.0+4.47i)T2 |
| 13 | 1+(1.77+3.47i)T+(−7.64+10.5i)T2 |
| 17 | 1+(−7.52−2.88i)T+(12.6+11.3i)T2 |
| 19 | 1+(0.203−1.93i)T+(−18.5−3.95i)T2 |
| 23 | 1+(5.87−0.308i)T+(22.8−2.40i)T2 |
| 29 | 1+(2.48+3.42i)T+(−8.96+27.5i)T2 |
| 31 | 1+(1.81+4.08i)T+(−20.7+23.0i)T2 |
| 37 | 1+(0.822−1.26i)T+(−15.0−33.8i)T2 |
| 41 | 1+(3.28+1.06i)T+(33.1+24.0i)T2 |
| 43 | 1+(−6.54−6.54i)T+43iT2 |
| 47 | 1+(0.294+0.766i)T+(−34.9+31.4i)T2 |
| 53 | 1+(7.12−8.79i)T+(−11.0−51.8i)T2 |
| 59 | 1+(2.32+2.57i)T+(−6.16+58.6i)T2 |
| 61 | 1+(1.38+1.24i)T+(6.37+60.6i)T2 |
| 67 | 1+(3.59−9.36i)T+(−49.7−44.8i)T2 |
| 71 | 1+(−2.57+1.87i)T+(21.9−67.5i)T2 |
| 73 | 1+(6.54−4.25i)T+(29.6−66.6i)T2 |
| 79 | 1+(3.15−7.09i)T+(−52.8−58.7i)T2 |
| 83 | 1+(14.5−2.31i)T+(78.9−25.6i)T2 |
| 89 | 1+(3.16−3.51i)T+(−9.30−88.5i)T2 |
| 97 | 1+(5.61+0.888i)T+(92.2+29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.59761415169156160138487601845, −10.00944407598257260351927797628, −9.756107104082823959105495707813, −8.918644257516669936586396839147, −7.933734962795924259742375959949, −6.11208786244167529587797425718, −5.64583094068120863465720873022, −4.03587042036957720794744171017, −2.90379927730270667713351728610, −1.49330699402693616914697273146,
1.61523826911282662026086092630, 3.42550679629079010179243523821, 4.79341112408202053453901081830, 5.91859916135748504339443442480, 6.95402644179543868360973918169, 7.53513298283991619873806789022, 8.844617734407687306871085189233, 9.665928035416991291547415355027, 10.41982248204371547475236158309, 11.57754010322994693506356095547