L(s) = 1 | + (−0.0523 − 0.998i)2-s + (−0.158 − 0.128i)3-s + (−0.994 + 0.104i)4-s + (−1.20 + 1.88i)5-s + (−0.119 + 0.164i)6-s + (0.823 − 2.51i)7-s + (0.156 + 0.987i)8-s + (−0.615 − 2.89i)9-s + (1.94 + 1.10i)10-s + (−4.28 − 0.911i)11-s + (0.170 + 0.110i)12-s + (−1.59 − 3.13i)13-s + (−2.55 − 0.690i)14-s + (0.432 − 0.143i)15-s + (0.978 − 0.207i)16-s + (3.12 + 1.20i)17-s + ⋯ |
L(s) = 1 | + (−0.0370 − 0.706i)2-s + (−0.0913 − 0.0739i)3-s + (−0.497 + 0.0522i)4-s + (−0.539 + 0.842i)5-s + (−0.0488 + 0.0672i)6-s + (0.311 − 0.950i)7-s + (0.0553 + 0.349i)8-s + (−0.205 − 0.964i)9-s + (0.614 + 0.349i)10-s + (−1.29 − 0.274i)11-s + (0.0492 + 0.0320i)12-s + (−0.443 − 0.870i)13-s + (−0.682 − 0.184i)14-s + (0.111 − 0.0370i)15-s + (0.244 − 0.0519i)16-s + (0.758 + 0.291i)17-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)(−0.895+0.445i)Λ(2−s)
Λ(s)=(=(350s/2ΓC(s+1/2)L(s)(−0.895+0.445i)Λ(1−s)
Degree: |
2 |
Conductor: |
350
= 2⋅52⋅7
|
Sign: |
−0.895+0.445i
|
Analytic conductor: |
2.79476 |
Root analytic conductor: |
1.67175 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ350(283,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 350, ( :1/2), −0.895+0.445i)
|
Particular Values
L(1) |
≈ |
0.164208−0.697875i |
L(21) |
≈ |
0.164208−0.697875i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.0523+0.998i)T |
| 5 | 1+(1.20−1.88i)T |
| 7 | 1+(−0.823+2.51i)T |
good | 3 | 1+(0.158+0.128i)T+(0.623+2.93i)T2 |
| 11 | 1+(4.28+0.911i)T+(10.0+4.47i)T2 |
| 13 | 1+(1.59+3.13i)T+(−7.64+10.5i)T2 |
| 17 | 1+(−3.12−1.20i)T+(12.6+11.3i)T2 |
| 19 | 1+(−0.644+6.13i)T+(−18.5−3.95i)T2 |
| 23 | 1+(5.32−0.279i)T+(22.8−2.40i)T2 |
| 29 | 1+(−0.478−0.658i)T+(−8.96+27.5i)T2 |
| 31 | 1+(0.875+1.96i)T+(−20.7+23.0i)T2 |
| 37 | 1+(4.88−7.52i)T+(−15.0−33.8i)T2 |
| 41 | 1+(−10.9−3.54i)T+(33.1+24.0i)T2 |
| 43 | 1+(−5.14−5.14i)T+43iT2 |
| 47 | 1+(0.179+0.466i)T+(−34.9+31.4i)T2 |
| 53 | 1+(−1.91+2.36i)T+(−11.0−51.8i)T2 |
| 59 | 1+(5.51+6.12i)T+(−6.16+58.6i)T2 |
| 61 | 1+(1.23+1.11i)T+(6.37+60.6i)T2 |
| 67 | 1+(1.25−3.27i)T+(−49.7−44.8i)T2 |
| 71 | 1+(−12.1+8.79i)T+(21.9−67.5i)T2 |
| 73 | 1+(−2.61+1.69i)T+(29.6−66.6i)T2 |
| 79 | 1+(−6.08+13.6i)T+(−52.8−58.7i)T2 |
| 83 | 1+(−7.78+1.23i)T+(78.9−25.6i)T2 |
| 89 | 1+(2.00−2.22i)T+(−9.30−88.5i)T2 |
| 97 | 1+(−9.90−1.56i)T+(92.2+29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.97447352497791110208646211509, −10.43788675054006754624639800391, −9.567636154999673652608537545374, −8.055605125371535414888293016604, −7.56274708333197450875140207837, −6.26658151321016606812493660825, −4.91344417845436477742848042178, −3.62176201304653677979425423526, −2.75501033995479605733207944293, −0.49610368408848332259000542041,
2.17540173613874137228653319327, 4.14139238531478748435080463920, 5.26544021929230551221162455033, 5.68150045132225509629149031978, 7.55098469161692268510041689085, 7.942971339930223665732091864090, 8.878099572142757960605538556824, 9.866094930475126449969670415051, 10.94562101051338524722795942523, 12.27392421788919938209993889966