L(s) = 1 | + (−0.0523 − 0.998i)2-s + (−1.68 − 1.36i)3-s + (−0.994 + 0.104i)4-s + (2.17 + 0.499i)5-s + (−1.27 + 1.75i)6-s + (−2.26 − 1.36i)7-s + (0.156 + 0.987i)8-s + (0.356 + 1.67i)9-s + (0.384 − 2.20i)10-s + (−4.13 − 0.878i)11-s + (1.82 + 1.18i)12-s + (−1.47 − 2.88i)13-s + (−1.24 + 2.33i)14-s + (−2.99 − 3.82i)15-s + (0.978 − 0.207i)16-s + (−2.51 − 0.963i)17-s + ⋯ |
L(s) = 1 | + (−0.0370 − 0.706i)2-s + (−0.974 − 0.788i)3-s + (−0.497 + 0.0522i)4-s + (0.974 + 0.223i)5-s + (−0.520 + 0.717i)6-s + (−0.856 − 0.516i)7-s + (0.0553 + 0.349i)8-s + (0.118 + 0.558i)9-s + (0.121 − 0.696i)10-s + (−1.24 − 0.264i)11-s + (0.525 + 0.341i)12-s + (−0.408 − 0.801i)13-s + (−0.332 + 0.623i)14-s + (−0.773 − 0.986i)15-s + (0.244 − 0.0519i)16-s + (−0.608 − 0.233i)17-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)(−0.798−0.602i)Λ(2−s)
Λ(s)=(=(350s/2ΓC(s+1/2)L(s)(−0.798−0.602i)Λ(1−s)
Degree: |
2 |
Conductor: |
350
= 2⋅52⋅7
|
Sign: |
−0.798−0.602i
|
Analytic conductor: |
2.79476 |
Root analytic conductor: |
1.67175 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ350(283,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 350, ( :1/2), −0.798−0.602i)
|
Particular Values
L(1) |
≈ |
0.131467+0.392653i |
L(21) |
≈ |
0.131467+0.392653i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.0523+0.998i)T |
| 5 | 1+(−2.17−0.499i)T |
| 7 | 1+(2.26+1.36i)T |
good | 3 | 1+(1.68+1.36i)T+(0.623+2.93i)T2 |
| 11 | 1+(4.13+0.878i)T+(10.0+4.47i)T2 |
| 13 | 1+(1.47+2.88i)T+(−7.64+10.5i)T2 |
| 17 | 1+(2.51+0.963i)T+(12.6+11.3i)T2 |
| 19 | 1+(0.765−7.28i)T+(−18.5−3.95i)T2 |
| 23 | 1+(0.420−0.0220i)T+(22.8−2.40i)T2 |
| 29 | 1+(−1.60−2.20i)T+(−8.96+27.5i)T2 |
| 31 | 1+(2.29+5.15i)T+(−20.7+23.0i)T2 |
| 37 | 1+(−4.14+6.38i)T+(−15.0−33.8i)T2 |
| 41 | 1+(8.21+2.66i)T+(33.1+24.0i)T2 |
| 43 | 1+(5.92+5.92i)T+43iT2 |
| 47 | 1+(1.06+2.78i)T+(−34.9+31.4i)T2 |
| 53 | 1+(−3.55+4.38i)T+(−11.0−51.8i)T2 |
| 59 | 1+(−1.52−1.68i)T+(−6.16+58.6i)T2 |
| 61 | 1+(6.08+5.47i)T+(6.37+60.6i)T2 |
| 67 | 1+(−3.21+8.36i)T+(−49.7−44.8i)T2 |
| 71 | 1+(−12.4+9.05i)T+(21.9−67.5i)T2 |
| 73 | 1+(12.0−7.84i)T+(29.6−66.6i)T2 |
| 79 | 1+(0.551−1.23i)T+(−52.8−58.7i)T2 |
| 83 | 1+(−15.4+2.43i)T+(78.9−25.6i)T2 |
| 89 | 1+(−5.00+5.55i)T+(−9.30−88.5i)T2 |
| 97 | 1+(13.0+2.06i)T+(92.2+29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.70738251093723798311173585498, −10.37014522435817171770056613393, −9.451640896712106166341755955675, −8.011214265132695055668088706150, −6.93388055209041532122437442927, −5.93369647876849130780430360775, −5.25641539644828084034460853329, −3.40794731076427289951664718838, −2.05661671127554959427466120125, −0.30391913153978530252926808962,
2.60498423843884149202552915195, 4.66432272552524277775701072504, 5.15166997364201499474761852911, 6.20128290229760344168458840277, 6.87889586994228382913702239953, 8.495708187435949161417744419866, 9.456368476712853812713202327921, 10.03123044774981950447325023482, 10.90014710464042402349650177908, 12.02644500504704636434463460504