L(s) = 1 | + (0.0523 + 0.998i)2-s + (−1.45 − 1.18i)3-s + (−0.994 + 0.104i)4-s + (−1.98 − 1.03i)5-s + (1.10 − 1.51i)6-s + (0.182 + 2.63i)7-s + (−0.156 − 0.987i)8-s + (0.109 + 0.515i)9-s + (0.932 − 2.03i)10-s + (5.35 + 1.13i)11-s + (1.57 + 1.02i)12-s + (2.02 + 3.97i)13-s + (−2.62 + 0.320i)14-s + (1.66 + 3.85i)15-s + (0.978 − 0.207i)16-s + (1.59 + 0.612i)17-s + ⋯ |
L(s) = 1 | + (0.0370 + 0.706i)2-s + (−0.842 − 0.682i)3-s + (−0.497 + 0.0522i)4-s + (−0.885 − 0.464i)5-s + (0.450 − 0.620i)6-s + (0.0691 + 0.997i)7-s + (−0.0553 − 0.349i)8-s + (0.0365 + 0.171i)9-s + (0.294 − 0.642i)10-s + (1.61 + 0.342i)11-s + (0.454 + 0.295i)12-s + (0.561 + 1.10i)13-s + (−0.701 + 0.0857i)14-s + (0.429 + 0.995i)15-s + (0.244 − 0.0519i)16-s + (0.387 + 0.148i)17-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)(0.522−0.852i)Λ(2−s)
Λ(s)=(=(350s/2ΓC(s+1/2)L(s)(0.522−0.852i)Λ(1−s)
Degree: |
2 |
Conductor: |
350
= 2⋅52⋅7
|
Sign: |
0.522−0.852i
|
Analytic conductor: |
2.79476 |
Root analytic conductor: |
1.67175 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ350(283,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 350, ( :1/2), 0.522−0.852i)
|
Particular Values
L(1) |
≈ |
0.763610+0.427767i |
L(21) |
≈ |
0.763610+0.427767i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.0523−0.998i)T |
| 5 | 1+(1.98+1.03i)T |
| 7 | 1+(−0.182−2.63i)T |
good | 3 | 1+(1.45+1.18i)T+(0.623+2.93i)T2 |
| 11 | 1+(−5.35−1.13i)T+(10.0+4.47i)T2 |
| 13 | 1+(−2.02−3.97i)T+(−7.64+10.5i)T2 |
| 17 | 1+(−1.59−0.612i)T+(12.6+11.3i)T2 |
| 19 | 1+(0.000953−0.00907i)T+(−18.5−3.95i)T2 |
| 23 | 1+(−4.72+0.247i)T+(22.8−2.40i)T2 |
| 29 | 1+(−1.47−2.03i)T+(−8.96+27.5i)T2 |
| 31 | 1+(3.16+7.10i)T+(−20.7+23.0i)T2 |
| 37 | 1+(2.70−4.16i)T+(−15.0−33.8i)T2 |
| 41 | 1+(−4.63−1.50i)T+(33.1+24.0i)T2 |
| 43 | 1+(−5.48−5.48i)T+43iT2 |
| 47 | 1+(2.82+7.36i)T+(−34.9+31.4i)T2 |
| 53 | 1+(6.66−8.22i)T+(−11.0−51.8i)T2 |
| 59 | 1+(−7.30−8.10i)T+(−6.16+58.6i)T2 |
| 61 | 1+(2.29+2.07i)T+(6.37+60.6i)T2 |
| 67 | 1+(−2.96+7.71i)T+(−49.7−44.8i)T2 |
| 71 | 1+(−4.72+3.43i)T+(21.9−67.5i)T2 |
| 73 | 1+(9.66−6.27i)T+(29.6−66.6i)T2 |
| 79 | 1+(−2.42+5.45i)T+(−52.8−58.7i)T2 |
| 83 | 1+(−14.8+2.35i)T+(78.9−25.6i)T2 |
| 89 | 1+(−1.83+2.04i)T+(−9.30−88.5i)T2 |
| 97 | 1+(−14.8−2.35i)T+(92.2+29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.79633211027495027810497190276, −11.21874854817299877651265539385, −9.233577646454955513234264656118, −8.946648756916195756389010150523, −7.66606188612989207419128675593, −6.68224215759424126759712739488, −6.07940927484201000317438197673, −4.86833973621051958577907764136, −3.75898690709365413567269764765, −1.29648886376238255454542446239,
0.837788760791178409790873756823, 3.38177677453793902581242168682, 4.03200988197061302915706635639, 5.13643849199985467110817193169, 6.43536153866113483689991312712, 7.55781134059754776040692751106, 8.694414537139781544315059759424, 9.876543619350294509301796618505, 10.88330928333222261121184970855, 10.99416096824099166065729933944