Properties

Label 2-350-175.108-c1-0-4
Degree $2$
Conductor $350$
Sign $0.522 - 0.852i$
Analytic cond. $2.79476$
Root an. cond. $1.67175$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0523 + 0.998i)2-s + (−1.45 − 1.18i)3-s + (−0.994 + 0.104i)4-s + (−1.98 − 1.03i)5-s + (1.10 − 1.51i)6-s + (0.182 + 2.63i)7-s + (−0.156 − 0.987i)8-s + (0.109 + 0.515i)9-s + (0.932 − 2.03i)10-s + (5.35 + 1.13i)11-s + (1.57 + 1.02i)12-s + (2.02 + 3.97i)13-s + (−2.62 + 0.320i)14-s + (1.66 + 3.85i)15-s + (0.978 − 0.207i)16-s + (1.59 + 0.612i)17-s + ⋯
L(s)  = 1  + (0.0370 + 0.706i)2-s + (−0.842 − 0.682i)3-s + (−0.497 + 0.0522i)4-s + (−0.885 − 0.464i)5-s + (0.450 − 0.620i)6-s + (0.0691 + 0.997i)7-s + (−0.0553 − 0.349i)8-s + (0.0365 + 0.171i)9-s + (0.294 − 0.642i)10-s + (1.61 + 0.342i)11-s + (0.454 + 0.295i)12-s + (0.561 + 1.10i)13-s + (−0.701 + 0.0857i)14-s + (0.429 + 0.995i)15-s + (0.244 − 0.0519i)16-s + (0.387 + 0.148i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.522 - 0.852i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.522 - 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350\)    =    \(2 \cdot 5^{2} \cdot 7\)
Sign: $0.522 - 0.852i$
Analytic conductor: \(2.79476\)
Root analytic conductor: \(1.67175\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{350} (283, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 350,\ (\ :1/2),\ 0.522 - 0.852i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.763610 + 0.427767i\)
\(L(\frac12)\) \(\approx\) \(0.763610 + 0.427767i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.0523 - 0.998i)T \)
5 \( 1 + (1.98 + 1.03i)T \)
7 \( 1 + (-0.182 - 2.63i)T \)
good3 \( 1 + (1.45 + 1.18i)T + (0.623 + 2.93i)T^{2} \)
11 \( 1 + (-5.35 - 1.13i)T + (10.0 + 4.47i)T^{2} \)
13 \( 1 + (-2.02 - 3.97i)T + (-7.64 + 10.5i)T^{2} \)
17 \( 1 + (-1.59 - 0.612i)T + (12.6 + 11.3i)T^{2} \)
19 \( 1 + (0.000953 - 0.00907i)T + (-18.5 - 3.95i)T^{2} \)
23 \( 1 + (-4.72 + 0.247i)T + (22.8 - 2.40i)T^{2} \)
29 \( 1 + (-1.47 - 2.03i)T + (-8.96 + 27.5i)T^{2} \)
31 \( 1 + (3.16 + 7.10i)T + (-20.7 + 23.0i)T^{2} \)
37 \( 1 + (2.70 - 4.16i)T + (-15.0 - 33.8i)T^{2} \)
41 \( 1 + (-4.63 - 1.50i)T + (33.1 + 24.0i)T^{2} \)
43 \( 1 + (-5.48 - 5.48i)T + 43iT^{2} \)
47 \( 1 + (2.82 + 7.36i)T + (-34.9 + 31.4i)T^{2} \)
53 \( 1 + (6.66 - 8.22i)T + (-11.0 - 51.8i)T^{2} \)
59 \( 1 + (-7.30 - 8.10i)T + (-6.16 + 58.6i)T^{2} \)
61 \( 1 + (2.29 + 2.07i)T + (6.37 + 60.6i)T^{2} \)
67 \( 1 + (-2.96 + 7.71i)T + (-49.7 - 44.8i)T^{2} \)
71 \( 1 + (-4.72 + 3.43i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (9.66 - 6.27i)T + (29.6 - 66.6i)T^{2} \)
79 \( 1 + (-2.42 + 5.45i)T + (-52.8 - 58.7i)T^{2} \)
83 \( 1 + (-14.8 + 2.35i)T + (78.9 - 25.6i)T^{2} \)
89 \( 1 + (-1.83 + 2.04i)T + (-9.30 - 88.5i)T^{2} \)
97 \( 1 + (-14.8 - 2.35i)T + (92.2 + 29.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.79633211027495027810497190276, −11.21874854817299877651265539385, −9.233577646454955513234264656118, −8.946648756916195756389010150523, −7.66606188612989207419128675593, −6.68224215759424126759712739488, −6.07940927484201000317438197673, −4.86833973621051958577907764136, −3.75898690709365413567269764765, −1.29648886376238255454542446239, 0.837788760791178409790873756823, 3.38177677453793902581242168682, 4.03200988197061302915706635639, 5.13643849199985467110817193169, 6.43536153866113483689991312712, 7.55781134059754776040692751106, 8.694414537139781544315059759424, 9.876543619350294509301796618505, 10.88330928333222261121184970855, 10.99416096824099166065729933944

Graph of the $Z$-function along the critical line