L(s) = 1 | − 4i·2-s + 2.52i·3-s − 16·4-s + 10.1·6-s + 49i·7-s + 64i·8-s + 236.·9-s − 267.·11-s − 40.4i·12-s + 896. i·13-s + 196·14-s + 256·16-s − 61.1i·17-s − 946. i·18-s − 1.62e3·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 0.162i·3-s − 0.5·4-s + 0.114·6-s + 0.377i·7-s + 0.353i·8-s + 0.973·9-s − 0.667·11-s − 0.0811i·12-s + 1.47i·13-s + 0.267·14-s + 0.250·16-s − 0.0513i·17-s − 0.688i·18-s − 1.03·19-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)(−0.894−0.447i)Λ(6−s)
Λ(s)=(=(350s/2ΓC(s+5/2)L(s)(−0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
350
= 2⋅52⋅7
|
Sign: |
−0.894−0.447i
|
Analytic conductor: |
56.1343 |
Root analytic conductor: |
7.49228 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ350(99,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 350, ( :5/2), −0.894−0.447i)
|
Particular Values
L(3) |
≈ |
0.03239791260 |
L(21) |
≈ |
0.03239791260 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+4iT |
| 5 | 1 |
| 7 | 1−49iT |
good | 3 | 1−2.52iT−243T2 |
| 11 | 1+267.T+1.61e5T2 |
| 13 | 1−896.iT−3.71e5T2 |
| 17 | 1+61.1iT−1.41e6T2 |
| 19 | 1+1.62e3T+2.47e6T2 |
| 23 | 1+4.28e3iT−6.43e6T2 |
| 29 | 1−7.42e3T+2.05e7T2 |
| 31 | 1+8.93e3T+2.86e7T2 |
| 37 | 1−640.iT−6.93e7T2 |
| 41 | 1−3.87e3T+1.15e8T2 |
| 43 | 1+1.97e4iT−1.47e8T2 |
| 47 | 1+2.06e3iT−2.29e8T2 |
| 53 | 1−1.97e4iT−4.18e8T2 |
| 59 | 1+4.64e4T+7.14e8T2 |
| 61 | 1+5.39e4T+8.44e8T2 |
| 67 | 1−4.46e4iT−1.35e9T2 |
| 71 | 1+5.05e4T+1.80e9T2 |
| 73 | 1+2.40e4iT−2.07e9T2 |
| 79 | 1+1.99e3T+3.07e9T2 |
| 83 | 1+5.05e4iT−3.93e9T2 |
| 89 | 1+6.03e4T+5.58e9T2 |
| 97 | 1−1.21e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.81361636569777055084295381098, −10.37988969964562802465597432019, −9.230367050323480989993433787266, −8.589436791201945474808697789892, −7.26430957855566921337318736143, −6.23704421236898820378142822265, −4.76051638181626058174911386654, −4.13580239737364879224118844548, −2.61122067145111493156955462707, −1.62335900851171546268618521582,
0.008268051112501743719563215198, 1.39181402855681858559124210733, 3.13974886455495503290148152174, 4.40192015873810799369049840029, 5.42269404384669105920751241472, 6.46060282983758481840909138890, 7.58111648398833761636345980237, 7.986539443461249917783059922530, 9.313562648503002847283029563488, 10.24622599385282984823748174269