Properties

Label 2-350-5.4-c5-0-0
Degree $2$
Conductor $350$
Sign $-0.894 - 0.447i$
Analytic cond. $56.1343$
Root an. cond. $7.49228$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4i·2-s + 2.52i·3-s − 16·4-s + 10.1·6-s + 49i·7-s + 64i·8-s + 236.·9-s − 267.·11-s − 40.4i·12-s + 896. i·13-s + 196·14-s + 256·16-s − 61.1i·17-s − 946. i·18-s − 1.62e3·19-s + ⋯
L(s)  = 1  − 0.707i·2-s + 0.162i·3-s − 0.5·4-s + 0.114·6-s + 0.377i·7-s + 0.353i·8-s + 0.973·9-s − 0.667·11-s − 0.0811i·12-s + 1.47i·13-s + 0.267·14-s + 0.250·16-s − 0.0513i·17-s − 0.688i·18-s − 1.03·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350\)    =    \(2 \cdot 5^{2} \cdot 7\)
Sign: $-0.894 - 0.447i$
Analytic conductor: \(56.1343\)
Root analytic conductor: \(7.49228\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{350} (99, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 350,\ (\ :5/2),\ -0.894 - 0.447i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.03239791260\)
\(L(\frac12)\) \(\approx\) \(0.03239791260\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4iT \)
5 \( 1 \)
7 \( 1 - 49iT \)
good3 \( 1 - 2.52iT - 243T^{2} \)
11 \( 1 + 267.T + 1.61e5T^{2} \)
13 \( 1 - 896. iT - 3.71e5T^{2} \)
17 \( 1 + 61.1iT - 1.41e6T^{2} \)
19 \( 1 + 1.62e3T + 2.47e6T^{2} \)
23 \( 1 + 4.28e3iT - 6.43e6T^{2} \)
29 \( 1 - 7.42e3T + 2.05e7T^{2} \)
31 \( 1 + 8.93e3T + 2.86e7T^{2} \)
37 \( 1 - 640. iT - 6.93e7T^{2} \)
41 \( 1 - 3.87e3T + 1.15e8T^{2} \)
43 \( 1 + 1.97e4iT - 1.47e8T^{2} \)
47 \( 1 + 2.06e3iT - 2.29e8T^{2} \)
53 \( 1 - 1.97e4iT - 4.18e8T^{2} \)
59 \( 1 + 4.64e4T + 7.14e8T^{2} \)
61 \( 1 + 5.39e4T + 8.44e8T^{2} \)
67 \( 1 - 4.46e4iT - 1.35e9T^{2} \)
71 \( 1 + 5.05e4T + 1.80e9T^{2} \)
73 \( 1 + 2.40e4iT - 2.07e9T^{2} \)
79 \( 1 + 1.99e3T + 3.07e9T^{2} \)
83 \( 1 + 5.05e4iT - 3.93e9T^{2} \)
89 \( 1 + 6.03e4T + 5.58e9T^{2} \)
97 \( 1 - 1.21e5iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.81361636569777055084295381098, −10.37988969964562802465597432019, −9.230367050323480989993433787266, −8.589436791201945474808697789892, −7.26430957855566921337318736143, −6.23704421236898820378142822265, −4.76051638181626058174911386654, −4.13580239737364879224118844548, −2.61122067145111493156955462707, −1.62335900851171546268618521582, 0.008268051112501743719563215198, 1.39181402855681858559124210733, 3.13974886455495503290148152174, 4.40192015873810799369049840029, 5.42269404384669105920751241472, 6.46060282983758481840909138890, 7.58111648398833761636345980237, 7.986539443461249917783059922530, 9.313562648503002847283029563488, 10.24622599385282984823748174269

Graph of the $Z$-function along the critical line