L(s) = 1 | + 8i·2-s + 49.3i·3-s − 64·4-s − 394.·6-s + 343i·7-s − 512i·8-s − 243.·9-s − 3.77e3·11-s − 3.15e3i·12-s − 6.86e3i·13-s − 2.74e3·14-s + 4.09e3·16-s + 1.52e4i·17-s − 1.94e3i·18-s − 2.10e4·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 1.05i·3-s − 0.5·4-s − 0.745·6-s + 0.377i·7-s − 0.353i·8-s − 0.111·9-s − 0.856·11-s − 0.527i·12-s − 0.866i·13-s − 0.267·14-s + 0.250·16-s + 0.753i·17-s − 0.0787i·18-s − 0.702·19-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)(0.447−0.894i)Λ(8−s)
Λ(s)=(=(350s/2ΓC(s+7/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
350
= 2⋅52⋅7
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
109.334 |
Root analytic conductor: |
10.4563 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ350(99,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 350, ( :7/2), 0.447−0.894i)
|
Particular Values
L(4) |
≈ |
1.567500054 |
L(21) |
≈ |
1.567500054 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−8iT |
| 5 | 1 |
| 7 | 1−343iT |
good | 3 | 1−49.3iT−2.18e3T2 |
| 11 | 1+3.77e3T+1.94e7T2 |
| 13 | 1+6.86e3iT−6.27e7T2 |
| 17 | 1−1.52e4iT−4.10e8T2 |
| 19 | 1+2.10e4T+8.93e8T2 |
| 23 | 1+9.24e4iT−3.40e9T2 |
| 29 | 1+7.86e4T+1.72e10T2 |
| 31 | 1−1.52e5T+2.75e10T2 |
| 37 | 1+4.45e5iT−9.49e10T2 |
| 41 | 1−3.84e5T+1.94e11T2 |
| 43 | 1−2.64e5iT−2.71e11T2 |
| 47 | 1+2.25e5iT−5.06e11T2 |
| 53 | 1+2.63e5iT−1.17e12T2 |
| 59 | 1+9.43e5T+2.48e12T2 |
| 61 | 1−2.40e6T+3.14e12T2 |
| 67 | 1+4.18e6iT−6.06e12T2 |
| 71 | 1−5.10e6T+9.09e12T2 |
| 73 | 1−3.16e6iT−1.10e13T2 |
| 79 | 1−5.00e6T+1.92e13T2 |
| 83 | 1+5.49e5iT−2.71e13T2 |
| 89 | 1−3.34e6T+4.42e13T2 |
| 97 | 1−1.54e6iT−8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.42010739906097248348726043709, −9.513059004794196542177872892550, −8.534589046782032329551650776592, −7.81405066536903758055418708164, −6.48850210883995776802624341478, −5.51079409022242760297772670868, −4.67191753970485882366629250370, −3.71880819934961154682809656266, −2.39496923066067519558058989281, −0.46487262549327110866363308595,
0.75331753309352303785891048237, 1.72510030869690200513554946762, 2.67197266616893315015538703294, 4.01341486589629185275671842654, 5.13901202851118832812273705421, 6.44601968186503434112930024299, 7.37848734233560318917213515344, 8.129567912294613114275924385527, 9.341257085204859170348690606474, 10.17223243065254885148484548966