Properties

Label 2-350-5.4-c7-0-35
Degree $2$
Conductor $350$
Sign $0.447 - 0.894i$
Analytic cond. $109.334$
Root an. cond. $10.4563$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8i·2-s + 49.3i·3-s − 64·4-s − 394.·6-s + 343i·7-s − 512i·8-s − 243.·9-s − 3.77e3·11-s − 3.15e3i·12-s − 6.86e3i·13-s − 2.74e3·14-s + 4.09e3·16-s + 1.52e4i·17-s − 1.94e3i·18-s − 2.10e4·19-s + ⋯
L(s)  = 1  + 0.707i·2-s + 1.05i·3-s − 0.5·4-s − 0.745·6-s + 0.377i·7-s − 0.353i·8-s − 0.111·9-s − 0.856·11-s − 0.527i·12-s − 0.866i·13-s − 0.267·14-s + 0.250·16-s + 0.753i·17-s − 0.0787i·18-s − 0.702·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350\)    =    \(2 \cdot 5^{2} \cdot 7\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(109.334\)
Root analytic conductor: \(10.4563\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{350} (99, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 350,\ (\ :7/2),\ 0.447 - 0.894i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.567500054\)
\(L(\frac12)\) \(\approx\) \(1.567500054\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8iT \)
5 \( 1 \)
7 \( 1 - 343iT \)
good3 \( 1 - 49.3iT - 2.18e3T^{2} \)
11 \( 1 + 3.77e3T + 1.94e7T^{2} \)
13 \( 1 + 6.86e3iT - 6.27e7T^{2} \)
17 \( 1 - 1.52e4iT - 4.10e8T^{2} \)
19 \( 1 + 2.10e4T + 8.93e8T^{2} \)
23 \( 1 + 9.24e4iT - 3.40e9T^{2} \)
29 \( 1 + 7.86e4T + 1.72e10T^{2} \)
31 \( 1 - 1.52e5T + 2.75e10T^{2} \)
37 \( 1 + 4.45e5iT - 9.49e10T^{2} \)
41 \( 1 - 3.84e5T + 1.94e11T^{2} \)
43 \( 1 - 2.64e5iT - 2.71e11T^{2} \)
47 \( 1 + 2.25e5iT - 5.06e11T^{2} \)
53 \( 1 + 2.63e5iT - 1.17e12T^{2} \)
59 \( 1 + 9.43e5T + 2.48e12T^{2} \)
61 \( 1 - 2.40e6T + 3.14e12T^{2} \)
67 \( 1 + 4.18e6iT - 6.06e12T^{2} \)
71 \( 1 - 5.10e6T + 9.09e12T^{2} \)
73 \( 1 - 3.16e6iT - 1.10e13T^{2} \)
79 \( 1 - 5.00e6T + 1.92e13T^{2} \)
83 \( 1 + 5.49e5iT - 2.71e13T^{2} \)
89 \( 1 - 3.34e6T + 4.42e13T^{2} \)
97 \( 1 - 1.54e6iT - 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.42010739906097248348726043709, −9.513059004794196542177872892550, −8.534589046782032329551650776592, −7.81405066536903758055418708164, −6.48850210883995776802624341478, −5.51079409022242760297772670868, −4.67191753970485882366629250370, −3.71880819934961154682809656266, −2.39496923066067519558058989281, −0.46487262549327110866363308595, 0.75331753309352303785891048237, 1.72510030869690200513554946762, 2.67197266616893315015538703294, 4.01341486589629185275671842654, 5.13901202851118832812273705421, 6.44601968186503434112930024299, 7.37848734233560318917213515344, 8.129567912294613114275924385527, 9.341257085204859170348690606474, 10.17223243065254885148484548966

Graph of the $Z$-function along the critical line