L(s) = 1 | − 2.56·3-s − 0.561·5-s + 3.56·9-s − 11-s + 2·13-s + 1.43·15-s + 7.12·17-s + 1.12·19-s + 7.68·23-s − 4.68·25-s − 1.43·27-s + 7.12·29-s + 5.43·31-s + 2.56·33-s − 5.68·37-s − 5.12·39-s − 8.24·41-s + 1.12·43-s − 2.00·45-s + 4·47-s − 7·49-s − 18.2·51-s + 8.24·53-s + 0.561·55-s − 2.87·57-s + 0.315·59-s + 9.36·61-s + ⋯ |
L(s) = 1 | − 1.47·3-s − 0.251·5-s + 1.18·9-s − 0.301·11-s + 0.554·13-s + 0.371·15-s + 1.72·17-s + 0.257·19-s + 1.60·23-s − 0.936·25-s − 0.276·27-s + 1.32·29-s + 0.976·31-s + 0.445·33-s − 0.934·37-s − 0.820·39-s − 1.28·41-s + 0.171·43-s − 0.298·45-s + 0.583·47-s − 49-s − 2.55·51-s + 1.13·53-s + 0.0757·55-s − 0.381·57-s + 0.0410·59-s + 1.19·61-s + ⋯ |
Λ(s)=(=(352s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(352s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.8062143406 |
L(21) |
≈ |
0.8062143406 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+T |
good | 3 | 1+2.56T+3T2 |
| 5 | 1+0.561T+5T2 |
| 7 | 1+7T2 |
| 13 | 1−2T+13T2 |
| 17 | 1−7.12T+17T2 |
| 19 | 1−1.12T+19T2 |
| 23 | 1−7.68T+23T2 |
| 29 | 1−7.12T+29T2 |
| 31 | 1−5.43T+31T2 |
| 37 | 1+5.68T+37T2 |
| 41 | 1+8.24T+41T2 |
| 43 | 1−1.12T+43T2 |
| 47 | 1−4T+47T2 |
| 53 | 1−8.24T+53T2 |
| 59 | 1−0.315T+59T2 |
| 61 | 1−9.36T+61T2 |
| 67 | 1+7.68T+67T2 |
| 71 | 1+15.6T+71T2 |
| 73 | 1+6T+73T2 |
| 79 | 1−13.1T+79T2 |
| 83 | 1−11.3T+83T2 |
| 89 | 1−0.561T+89T2 |
| 97 | 1−5.68T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.71637930315705832383908896038, −10.55797848962274206480390322282, −10.06589824870708370937970806103, −8.639658734738239079781631052209, −7.52032751894912668633406699865, −6.51405201310665444503786570704, −5.57052142861751043992859836001, −4.80128707043152207413273055438, −3.30198380786633657028182233539, −1.00310502704205625408320475655,
1.00310502704205625408320475655, 3.30198380786633657028182233539, 4.80128707043152207413273055438, 5.57052142861751043992859836001, 6.51405201310665444503786570704, 7.52032751894912668633406699865, 8.639658734738239079781631052209, 10.06589824870708370937970806103, 10.55797848962274206480390322282, 11.71637930315705832383908896038