Properties

Label 2-352-1.1-c1-0-0
Degree $2$
Conductor $352$
Sign $1$
Analytic cond. $2.81073$
Root an. cond. $1.67652$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.56·3-s − 0.561·5-s + 3.56·9-s − 11-s + 2·13-s + 1.43·15-s + 7.12·17-s + 1.12·19-s + 7.68·23-s − 4.68·25-s − 1.43·27-s + 7.12·29-s + 5.43·31-s + 2.56·33-s − 5.68·37-s − 5.12·39-s − 8.24·41-s + 1.12·43-s − 2.00·45-s + 4·47-s − 7·49-s − 18.2·51-s + 8.24·53-s + 0.561·55-s − 2.87·57-s + 0.315·59-s + 9.36·61-s + ⋯
L(s)  = 1  − 1.47·3-s − 0.251·5-s + 1.18·9-s − 0.301·11-s + 0.554·13-s + 0.371·15-s + 1.72·17-s + 0.257·19-s + 1.60·23-s − 0.936·25-s − 0.276·27-s + 1.32·29-s + 0.976·31-s + 0.445·33-s − 0.934·37-s − 0.820·39-s − 1.28·41-s + 0.171·43-s − 0.298·45-s + 0.583·47-s − 49-s − 2.55·51-s + 1.13·53-s + 0.0757·55-s − 0.381·57-s + 0.0410·59-s + 1.19·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(352\)    =    \(2^{5} \cdot 11\)
Sign: $1$
Analytic conductor: \(2.81073\)
Root analytic conductor: \(1.67652\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 352,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8062143406\)
\(L(\frac12)\) \(\approx\) \(0.8062143406\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 + T \)
good3 \( 1 + 2.56T + 3T^{2} \)
5 \( 1 + 0.561T + 5T^{2} \)
7 \( 1 + 7T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
17 \( 1 - 7.12T + 17T^{2} \)
19 \( 1 - 1.12T + 19T^{2} \)
23 \( 1 - 7.68T + 23T^{2} \)
29 \( 1 - 7.12T + 29T^{2} \)
31 \( 1 - 5.43T + 31T^{2} \)
37 \( 1 + 5.68T + 37T^{2} \)
41 \( 1 + 8.24T + 41T^{2} \)
43 \( 1 - 1.12T + 43T^{2} \)
47 \( 1 - 4T + 47T^{2} \)
53 \( 1 - 8.24T + 53T^{2} \)
59 \( 1 - 0.315T + 59T^{2} \)
61 \( 1 - 9.36T + 61T^{2} \)
67 \( 1 + 7.68T + 67T^{2} \)
71 \( 1 + 15.6T + 71T^{2} \)
73 \( 1 + 6T + 73T^{2} \)
79 \( 1 - 13.1T + 79T^{2} \)
83 \( 1 - 11.3T + 83T^{2} \)
89 \( 1 - 0.561T + 89T^{2} \)
97 \( 1 - 5.68T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.71637930315705832383908896038, −10.55797848962274206480390322282, −10.06589824870708370937970806103, −8.639658734738239079781631052209, −7.52032751894912668633406699865, −6.51405201310665444503786570704, −5.57052142861751043992859836001, −4.80128707043152207413273055438, −3.30198380786633657028182233539, −1.00310502704205625408320475655, 1.00310502704205625408320475655, 3.30198380786633657028182233539, 4.80128707043152207413273055438, 5.57052142861751043992859836001, 6.51405201310665444503786570704, 7.52032751894912668633406699865, 8.639658734738239079781631052209, 10.06589824870708370937970806103, 10.55797848962274206480390322282, 11.71637930315705832383908896038

Graph of the $Z$-function along the critical line