L(s) = 1 | + (−0.5 + 1.53i)3-s + (−2.61 + 1.90i)5-s + (−1.38 − 4.25i)7-s + (0.309 + 0.224i)9-s + (−3.30 + 0.224i)11-s + (−1 − 0.726i)13-s + (−1.61 − 4.97i)15-s + (−1.5 + 1.08i)17-s + (1.66 − 5.11i)19-s + 7.23·21-s − 5.23·23-s + (1.69 − 5.20i)25-s + (−4.42 + 3.21i)27-s + (−2.61 − 8.05i)29-s + (0.381 + 0.277i)31-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.888i)3-s + (−1.17 + 0.850i)5-s + (−0.522 − 1.60i)7-s + (0.103 + 0.0748i)9-s + (−0.997 + 0.0676i)11-s + (−0.277 − 0.201i)13-s + (−0.417 − 1.28i)15-s + (−0.363 + 0.264i)17-s + (0.381 − 1.17i)19-s + 1.57·21-s − 1.09·23-s + (0.338 − 1.04i)25-s + (−0.851 + 0.619i)27-s + (−0.486 − 1.49i)29-s + (0.0686 + 0.0498i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.751 + 0.659i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.751 + 0.659i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (3.30 - 0.224i)T \) |
good | 3 | \( 1 + (0.5 - 1.53i)T + (-2.42 - 1.76i)T^{2} \) |
| 5 | \( 1 + (2.61 - 1.90i)T + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (1.38 + 4.25i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (1 + 0.726i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (1.5 - 1.08i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.66 + 5.11i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 5.23T + 23T^{2} \) |
| 29 | \( 1 + (2.61 + 8.05i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-0.381 - 0.277i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-2.85 - 8.78i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (2.26 - 6.96i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 4.09T + 43T^{2} \) |
| 47 | \( 1 + (2 - 6.15i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (5.23 + 3.80i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-2.80 - 8.64i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (2 - 1.45i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 1.38T + 67T^{2} \) |
| 71 | \( 1 + (-3 + 2.17i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (1.26 + 3.88i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (4.85 + 3.52i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (1.92 - 1.40i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 6.38T + 89T^{2} \) |
| 97 | \( 1 + (4.54 + 3.30i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.02057187369932880474590405706, −10.23437906467793589238101379297, −9.790307239538750785277506975410, −7.946437598492409176256447020654, −7.46098195988438707761063349612, −6.45311900967382577253584636680, −4.74593644084615635962368525140, −4.06661752714080717231614769577, −3.04719940887095986562796251707, 0,
2.04981031053179698684337632579, 3.64199558518092546762566709298, 5.13256061666897703691362413305, 5.96127071999746570565225057537, 7.22494039507714965586468935351, 8.066893630161135541193811681531, 8.833391827813415079616245940941, 9.860766434134297041671188187853, 11.31890009626581160904711270912