L(s) = 1 | + (0.708 − 0.975i)3-s + (0.671 − 2.06i)5-s + (1.18 − 0.858i)7-s + (0.477 + 1.47i)9-s + (−3.29 − 0.371i)11-s + (5.50 − 1.78i)13-s + (−1.54 − 2.11i)15-s + (−2.83 − 0.921i)17-s + (−4.63 − 3.36i)19-s − 1.76i·21-s − 0.400i·23-s + (0.222 + 0.162i)25-s + (5.21 + 1.69i)27-s + (2.26 + 3.11i)29-s + (−1.41 + 0.460i)31-s + ⋯ |
L(s) = 1 | + (0.409 − 0.563i)3-s + (0.300 − 0.924i)5-s + (0.446 − 0.324i)7-s + (0.159 + 0.490i)9-s + (−0.993 − 0.112i)11-s + (1.52 − 0.496i)13-s + (−0.397 − 0.547i)15-s + (−0.688 − 0.223i)17-s + (−1.06 − 0.773i)19-s − 0.384i·21-s − 0.0834i·23-s + (0.0445 + 0.0324i)25-s + (1.00 + 0.325i)27-s + (0.419 + 0.577i)29-s + (−0.254 + 0.0827i)31-s + ⋯ |
Λ(s)=(=(352s/2ΓC(s)L(s)(0.371+0.928i)Λ(2−s)
Λ(s)=(=(352s/2ΓC(s+1/2)L(s)(0.371+0.928i)Λ(1−s)
Degree: |
2 |
Conductor: |
352
= 25⋅11
|
Sign: |
0.371+0.928i
|
Analytic conductor: |
2.81073 |
Root analytic conductor: |
1.67652 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ352(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 352, ( :1/2), 0.371+0.928i)
|
Particular Values
L(1) |
≈ |
1.34495−0.910221i |
L(21) |
≈ |
1.34495−0.910221i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(3.29+0.371i)T |
good | 3 | 1+(−0.708+0.975i)T+(−0.927−2.85i)T2 |
| 5 | 1+(−0.671+2.06i)T+(−4.04−2.93i)T2 |
| 7 | 1+(−1.18+0.858i)T+(2.16−6.65i)T2 |
| 13 | 1+(−5.50+1.78i)T+(10.5−7.64i)T2 |
| 17 | 1+(2.83+0.921i)T+(13.7+9.99i)T2 |
| 19 | 1+(4.63+3.36i)T+(5.87+18.0i)T2 |
| 23 | 1+0.400iT−23T2 |
| 29 | 1+(−2.26−3.11i)T+(−8.96+27.5i)T2 |
| 31 | 1+(1.41−0.460i)T+(25.0−18.2i)T2 |
| 37 | 1+(−5.01+3.64i)T+(11.4−35.1i)T2 |
| 41 | 1+(2.50−3.45i)T+(−12.6−38.9i)T2 |
| 43 | 1−6.17T+43T2 |
| 47 | 1+(4.79−6.59i)T+(−14.5−44.6i)T2 |
| 53 | 1+(0.633+1.95i)T+(−42.8+31.1i)T2 |
| 59 | 1+(−7.19−9.90i)T+(−18.2+56.1i)T2 |
| 61 | 1+(12.4+4.04i)T+(49.3+35.8i)T2 |
| 67 | 1−2.72iT−67T2 |
| 71 | 1+(−9.62−3.12i)T+(57.4+41.7i)T2 |
| 73 | 1+(−2.77−3.81i)T+(−22.5+69.4i)T2 |
| 79 | 1+(2.34+7.20i)T+(−63.9+46.4i)T2 |
| 83 | 1+(3.31−10.1i)T+(−67.1−48.7i)T2 |
| 89 | 1−1.16T+89T2 |
| 97 | 1+(−5.15−15.8i)T+(−78.4+57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.99091276572895667942904519356, −10.71159209462170840084638606419, −9.161180032827287290618901254768, −8.409261940182769167529954320380, −7.78656902353057562155756131017, −6.54005063987887360482569394160, −5.30142271177874437391274195129, −4.38387248517427633075870587551, −2.63099320147368262214905205406, −1.24114898896623376475622490864,
2.13141761680469463215722684236, 3.42708608729147455232122641181, 4.47292318058643453576010630414, 5.98822870669951759100926882329, 6.70001748084125243998993024282, 8.151769769386247179846771222762, 8.804037303296103468998653629905, 9.956587215132374124696924203812, 10.66199751319597310528108271423, 11.36732863451861794502341115790