L(s) = 1 | + (−1.67 + 2.31i)3-s + (−2.48 − 0.805i)5-s + (0.158 − 0.115i)7-s + (−1.59 − 4.90i)9-s + (−2.89 − 1.62i)11-s + (3.78 − 1.22i)13-s + (6.02 − 4.37i)15-s + (−0.382 + 1.17i)17-s + (3.21 − 4.42i)19-s + 0.560i·21-s − 3.19·23-s + (1.45 + 1.05i)25-s + (5.87 + 1.90i)27-s + (1.78 + 2.45i)29-s + (−3.03 − 9.35i)31-s + ⋯ |
L(s) = 1 | + (−0.969 + 1.33i)3-s + (−1.10 − 0.360i)5-s + (0.0600 − 0.0436i)7-s + (−0.531 − 1.63i)9-s + (−0.871 − 0.490i)11-s + (1.04 − 0.340i)13-s + (1.55 − 1.13i)15-s + (−0.0928 + 0.285i)17-s + (0.738 − 1.01i)19-s + 0.122i·21-s − 0.666·23-s + (0.291 + 0.211i)25-s + (1.13 + 0.367i)27-s + (0.331 + 0.455i)29-s + (−0.545 − 1.67i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.138 + 0.990i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.138 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.253211 - 0.220371i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.253211 - 0.220371i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (2.89 + 1.62i)T \) |
good | 3 | \( 1 + (1.67 - 2.31i)T + (-0.927 - 2.85i)T^{2} \) |
| 5 | \( 1 + (2.48 + 0.805i)T + (4.04 + 2.93i)T^{2} \) |
| 7 | \( 1 + (-0.158 + 0.115i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (-3.78 + 1.22i)T + (10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (0.382 - 1.17i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (-3.21 + 4.42i)T + (-5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + 3.19T + 23T^{2} \) |
| 29 | \( 1 + (-1.78 - 2.45i)T + (-8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (3.03 + 9.35i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (4.43 + 6.10i)T + (-11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (5.91 + 4.30i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 - 3.82iT - 43T^{2} \) |
| 47 | \( 1 + (0.410 + 0.298i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (-0.0202 + 0.00659i)T + (42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (3.31 + 4.56i)T + (-18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (12.3 + 4.00i)T + (49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 - 2.16iT - 67T^{2} \) |
| 71 | \( 1 + (1.31 - 4.06i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-2.07 + 1.50i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-1.57 - 4.85i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-2.18 - 0.710i)T + (67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + 6.22T + 89T^{2} \) |
| 97 | \( 1 + (0.257 + 0.792i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.10426296141263489237568687025, −10.67491610405270073783292122256, −9.547586776383980182083906456892, −8.555671778114868968677945369140, −7.61764681345048024786736361220, −6.07660431964673890113496187062, −5.21629631326852674260199617259, −4.25158821524304183053626283187, −3.38564987644838603532733279728, −0.26718298629666462678012045968,
1.59470394435154743765689264071, 3.40566530257385580711219363772, 4.95227721350620216895642054682, 6.06279672572496198544392325880, 7.00503120662548153972290036566, 7.70421920871280066103733149450, 8.461793631548944650963175391424, 10.21097384720534865901851766635, 11.04366957846045593182646715208, 11.94886573337401307118172179128