L(s) = 1 | + (−1.67 + 2.31i)3-s + (−2.48 − 0.805i)5-s + (0.158 − 0.115i)7-s + (−1.59 − 4.90i)9-s + (−2.89 − 1.62i)11-s + (3.78 − 1.22i)13-s + (6.02 − 4.37i)15-s + (−0.382 + 1.17i)17-s + (3.21 − 4.42i)19-s + 0.560i·21-s − 3.19·23-s + (1.45 + 1.05i)25-s + (5.87 + 1.90i)27-s + (1.78 + 2.45i)29-s + (−3.03 − 9.35i)31-s + ⋯ |
L(s) = 1 | + (−0.969 + 1.33i)3-s + (−1.10 − 0.360i)5-s + (0.0600 − 0.0436i)7-s + (−0.531 − 1.63i)9-s + (−0.871 − 0.490i)11-s + (1.04 − 0.340i)13-s + (1.55 − 1.13i)15-s + (−0.0928 + 0.285i)17-s + (0.738 − 1.01i)19-s + 0.122i·21-s − 0.666·23-s + (0.291 + 0.211i)25-s + (1.13 + 0.367i)27-s + (0.331 + 0.455i)29-s + (−0.545 − 1.67i)31-s + ⋯ |
Λ(s)=(=(352s/2ΓC(s)L(s)(0.138+0.990i)Λ(2−s)
Λ(s)=(=(352s/2ΓC(s+1/2)L(s)(0.138+0.990i)Λ(1−s)
Degree: |
2 |
Conductor: |
352
= 25⋅11
|
Sign: |
0.138+0.990i
|
Analytic conductor: |
2.81073 |
Root analytic conductor: |
1.67652 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ352(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 352, ( :1/2), 0.138+0.990i)
|
Particular Values
L(1) |
≈ |
0.253211−0.220371i |
L(21) |
≈ |
0.253211−0.220371i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(2.89+1.62i)T |
good | 3 | 1+(1.67−2.31i)T+(−0.927−2.85i)T2 |
| 5 | 1+(2.48+0.805i)T+(4.04+2.93i)T2 |
| 7 | 1+(−0.158+0.115i)T+(2.16−6.65i)T2 |
| 13 | 1+(−3.78+1.22i)T+(10.5−7.64i)T2 |
| 17 | 1+(0.382−1.17i)T+(−13.7−9.99i)T2 |
| 19 | 1+(−3.21+4.42i)T+(−5.87−18.0i)T2 |
| 23 | 1+3.19T+23T2 |
| 29 | 1+(−1.78−2.45i)T+(−8.96+27.5i)T2 |
| 31 | 1+(3.03+9.35i)T+(−25.0+18.2i)T2 |
| 37 | 1+(4.43+6.10i)T+(−11.4+35.1i)T2 |
| 41 | 1+(5.91+4.30i)T+(12.6+38.9i)T2 |
| 43 | 1−3.82iT−43T2 |
| 47 | 1+(0.410+0.298i)T+(14.5+44.6i)T2 |
| 53 | 1+(−0.0202+0.00659i)T+(42.8−31.1i)T2 |
| 59 | 1+(3.31+4.56i)T+(−18.2+56.1i)T2 |
| 61 | 1+(12.3+4.00i)T+(49.3+35.8i)T2 |
| 67 | 1−2.16iT−67T2 |
| 71 | 1+(1.31−4.06i)T+(−57.4−41.7i)T2 |
| 73 | 1+(−2.07+1.50i)T+(22.5−69.4i)T2 |
| 79 | 1+(−1.57−4.85i)T+(−63.9+46.4i)T2 |
| 83 | 1+(−2.18−0.710i)T+(67.1+48.7i)T2 |
| 89 | 1+6.22T+89T2 |
| 97 | 1+(0.257+0.792i)T+(−78.4+57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.10426296141263489237568687025, −10.67491610405270073783292122256, −9.547586776383980182083906456892, −8.555671778114868968677945369140, −7.61764681345048024786736361220, −6.07660431964673890113496187062, −5.21629631326852674260199617259, −4.25158821524304183053626283187, −3.38564987644838603532733279728, −0.26718298629666462678012045968,
1.59470394435154743765689264071, 3.40566530257385580711219363772, 4.95227721350620216895642054682, 6.06279672572496198544392325880, 7.00503120662548153972290036566, 7.70421920871280066103733149450, 8.461793631548944650963175391424, 10.21097384720534865901851766635, 11.04366957846045593182646715208, 11.94886573337401307118172179128