Properties

Label 2-3520-1.1-c1-0-19
Degree $2$
Conductor $3520$
Sign $1$
Analytic cond. $28.1073$
Root an. cond. $5.30163$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s − 4·7-s + 9-s − 11-s − 4·13-s − 2·15-s + 4·17-s + 4·19-s − 8·21-s + 6·23-s + 25-s − 4·27-s + 10·29-s + 4·31-s − 2·33-s + 4·35-s − 2·37-s − 8·39-s − 10·41-s + 8·43-s − 45-s − 6·47-s + 9·49-s + 8·51-s − 2·53-s + 55-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s − 1.51·7-s + 1/3·9-s − 0.301·11-s − 1.10·13-s − 0.516·15-s + 0.970·17-s + 0.917·19-s − 1.74·21-s + 1.25·23-s + 1/5·25-s − 0.769·27-s + 1.85·29-s + 0.718·31-s − 0.348·33-s + 0.676·35-s − 0.328·37-s − 1.28·39-s − 1.56·41-s + 1.21·43-s − 0.149·45-s − 0.875·47-s + 9/7·49-s + 1.12·51-s − 0.274·53-s + 0.134·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3520\)    =    \(2^{6} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(28.1073\)
Root analytic conductor: \(5.30163\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3520,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.930006648\)
\(L(\frac12)\) \(\approx\) \(1.930006648\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 10 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 12 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.527521801955114252432580447305, −7.923580520667090509256462573465, −7.14162936849208426215495288495, −6.62536331191924721842679282461, −5.48691634933986413556576113146, −4.69737474865266608096337291625, −3.42894015870646694064785929471, −3.15044879752992676393154963603, −2.43460898771104914069889479972, −0.75069098874977159462101565047, 0.75069098874977159462101565047, 2.43460898771104914069889479972, 3.15044879752992676393154963603, 3.42894015870646694064785929471, 4.69737474865266608096337291625, 5.48691634933986413556576113146, 6.62536331191924721842679282461, 7.14162936849208426215495288495, 7.923580520667090509256462573465, 8.527521801955114252432580447305

Graph of the $Z$-function along the critical line