L(s) = 1 | + 2·3-s − 5-s − 4·7-s + 9-s − 11-s − 4·13-s − 2·15-s + 4·17-s + 4·19-s − 8·21-s + 6·23-s + 25-s − 4·27-s + 10·29-s + 4·31-s − 2·33-s + 4·35-s − 2·37-s − 8·39-s − 10·41-s + 8·43-s − 45-s − 6·47-s + 9·49-s + 8·51-s − 2·53-s + 55-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.447·5-s − 1.51·7-s + 1/3·9-s − 0.301·11-s − 1.10·13-s − 0.516·15-s + 0.970·17-s + 0.917·19-s − 1.74·21-s + 1.25·23-s + 1/5·25-s − 0.769·27-s + 1.85·29-s + 0.718·31-s − 0.348·33-s + 0.676·35-s − 0.328·37-s − 1.28·39-s − 1.56·41-s + 1.21·43-s − 0.149·45-s − 0.875·47-s + 9/7·49-s + 1.12·51-s − 0.274·53-s + 0.134·55-s + ⋯ |
Λ(s)=(=(3520s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3520s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.930006648 |
L(21) |
≈ |
1.930006648 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
| 11 | 1+T |
good | 3 | 1−2T+pT2 |
| 7 | 1+4T+pT2 |
| 13 | 1+4T+pT2 |
| 17 | 1−4T+pT2 |
| 19 | 1−4T+pT2 |
| 23 | 1−6T+pT2 |
| 29 | 1−10T+pT2 |
| 31 | 1−4T+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1+10T+pT2 |
| 43 | 1−8T+pT2 |
| 47 | 1+6T+pT2 |
| 53 | 1+2T+pT2 |
| 59 | 1−4T+pT2 |
| 61 | 1−10T+pT2 |
| 67 | 1−2T+pT2 |
| 71 | 1+pT2 |
| 73 | 1−12T+pT2 |
| 79 | 1−8T+pT2 |
| 83 | 1+pT2 |
| 89 | 1+10T+pT2 |
| 97 | 1+2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.527521801955114252432580447305, −7.923580520667090509256462573465, −7.14162936849208426215495288495, −6.62536331191924721842679282461, −5.48691634933986413556576113146, −4.69737474865266608096337291625, −3.42894015870646694064785929471, −3.15044879752992676393154963603, −2.43460898771104914069889479972, −0.75069098874977159462101565047,
0.75069098874977159462101565047, 2.43460898771104914069889479972, 3.15044879752992676393154963603, 3.42894015870646694064785929471, 4.69737474865266608096337291625, 5.48691634933986413556576113146, 6.62536331191924721842679282461, 7.14162936849208426215495288495, 7.923580520667090509256462573465, 8.527521801955114252432580447305