Properties

Label 2-3520-1.1-c1-0-53
Degree $2$
Conductor $3520$
Sign $-1$
Analytic cond. $28.1073$
Root an. cond. $5.30163$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 5-s + 4·7-s + 9-s + 11-s − 4·13-s + 2·15-s + 4·17-s − 4·19-s − 8·21-s − 6·23-s + 25-s + 4·27-s + 10·29-s − 4·31-s − 2·33-s − 4·35-s − 2·37-s + 8·39-s − 10·41-s − 8·43-s − 45-s + 6·47-s + 9·49-s − 8·51-s − 2·53-s − 55-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.447·5-s + 1.51·7-s + 1/3·9-s + 0.301·11-s − 1.10·13-s + 0.516·15-s + 0.970·17-s − 0.917·19-s − 1.74·21-s − 1.25·23-s + 1/5·25-s + 0.769·27-s + 1.85·29-s − 0.718·31-s − 0.348·33-s − 0.676·35-s − 0.328·37-s + 1.28·39-s − 1.56·41-s − 1.21·43-s − 0.149·45-s + 0.875·47-s + 9/7·49-s − 1.12·51-s − 0.274·53-s − 0.134·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3520\)    =    \(2^{6} \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(28.1073\)
Root analytic conductor: \(5.30163\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3520,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 10 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 12 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.249352180969310893124091064110, −7.43830406494792928247165218921, −6.68490218101470737292185331768, −5.86044811040013095840672728210, −4.97420459330455545206802104972, −4.74375816002078213350021356672, −3.68779393676913535536695451851, −2.33965017826349556217612695216, −1.28611294996796877603666741977, 0, 1.28611294996796877603666741977, 2.33965017826349556217612695216, 3.68779393676913535536695451851, 4.74375816002078213350021356672, 4.97420459330455545206802104972, 5.86044811040013095840672728210, 6.68490218101470737292185331768, 7.43830406494792928247165218921, 8.249352180969310893124091064110

Graph of the $Z$-function along the critical line