L(s) = 1 | − 3-s − 5-s − 7-s − 2·9-s − 11-s + 2·13-s + 15-s − 5·17-s + 7·19-s + 21-s − 6·23-s + 25-s + 5·27-s + 29-s − 5·31-s + 33-s + 35-s − 11·37-s − 2·39-s + 2·41-s − 4·43-s + 2·45-s + 6·47-s − 6·49-s + 5·51-s + 53-s + 55-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.447·5-s − 0.377·7-s − 2/3·9-s − 0.301·11-s + 0.554·13-s + 0.258·15-s − 1.21·17-s + 1.60·19-s + 0.218·21-s − 1.25·23-s + 1/5·25-s + 0.962·27-s + 0.185·29-s − 0.898·31-s + 0.174·33-s + 0.169·35-s − 1.80·37-s − 0.320·39-s + 0.312·41-s − 0.609·43-s + 0.298·45-s + 0.875·47-s − 6/7·49-s + 0.700·51-s + 0.137·53-s + 0.134·55-s + ⋯ |
Λ(s)=(=(3520s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3520s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.7944844712 |
L(21) |
≈ |
0.7944844712 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
| 11 | 1+T |
good | 3 | 1+T+pT2 |
| 7 | 1+T+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1+5T+pT2 |
| 19 | 1−7T+pT2 |
| 23 | 1+6T+pT2 |
| 29 | 1−T+pT2 |
| 31 | 1+5T+pT2 |
| 37 | 1+11T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1−6T+pT2 |
| 53 | 1−T+pT2 |
| 59 | 1−10T+pT2 |
| 61 | 1+5T+pT2 |
| 67 | 1−8T+pT2 |
| 71 | 1−9T+pT2 |
| 73 | 1+6T+pT2 |
| 79 | 1+10T+pT2 |
| 83 | 1−6T+pT2 |
| 89 | 1−17T+pT2 |
| 97 | 1−16T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.608740568697848080864230626915, −7.82448368747913391276430948485, −7.01608618441703671864583600001, −6.31376271112230576625519630596, −5.55058267506529268713362678327, −4.92395331212686291950472319307, −3.82844694626200613701514838124, −3.16039042154847503047624020435, −2.00139176724287747848757418899, −0.52054713672409666411604741362,
0.52054713672409666411604741362, 2.00139176724287747848757418899, 3.16039042154847503047624020435, 3.82844694626200613701514838124, 4.92395331212686291950472319307, 5.55058267506529268713362678327, 6.31376271112230576625519630596, 7.01608618441703671864583600001, 7.82448368747913391276430948485, 8.608740568697848080864230626915