L(s) = 1 | − 3-s − 5-s − 7-s − 2·9-s − 11-s + 2·13-s + 15-s − 5·17-s + 7·19-s + 21-s − 6·23-s + 25-s + 5·27-s + 29-s − 5·31-s + 33-s + 35-s − 11·37-s − 2·39-s + 2·41-s − 4·43-s + 2·45-s + 6·47-s − 6·49-s + 5·51-s + 53-s + 55-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.447·5-s − 0.377·7-s − 2/3·9-s − 0.301·11-s + 0.554·13-s + 0.258·15-s − 1.21·17-s + 1.60·19-s + 0.218·21-s − 1.25·23-s + 1/5·25-s + 0.962·27-s + 0.185·29-s − 0.898·31-s + 0.174·33-s + 0.169·35-s − 1.80·37-s − 0.320·39-s + 0.312·41-s − 0.609·43-s + 0.298·45-s + 0.875·47-s − 6/7·49-s + 0.700·51-s + 0.137·53-s + 0.134·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7944844712\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7944844712\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + T \) |
| 11 | \( 1 + T \) |
good | 3 | \( 1 + T + p T^{2} \) |
| 7 | \( 1 + T + p T^{2} \) |
| 13 | \( 1 - 2 T + p T^{2} \) |
| 17 | \( 1 + 5 T + p T^{2} \) |
| 19 | \( 1 - 7 T + p T^{2} \) |
| 23 | \( 1 + 6 T + p T^{2} \) |
| 29 | \( 1 - T + p T^{2} \) |
| 31 | \( 1 + 5 T + p T^{2} \) |
| 37 | \( 1 + 11 T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 + 4 T + p T^{2} \) |
| 47 | \( 1 - 6 T + p T^{2} \) |
| 53 | \( 1 - T + p T^{2} \) |
| 59 | \( 1 - 10 T + p T^{2} \) |
| 61 | \( 1 + 5 T + p T^{2} \) |
| 67 | \( 1 - 8 T + p T^{2} \) |
| 71 | \( 1 - 9 T + p T^{2} \) |
| 73 | \( 1 + 6 T + p T^{2} \) |
| 79 | \( 1 + 10 T + p T^{2} \) |
| 83 | \( 1 - 6 T + p T^{2} \) |
| 89 | \( 1 - 17 T + p T^{2} \) |
| 97 | \( 1 - 16 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.608740568697848080864230626915, −7.82448368747913391276430948485, −7.01608618441703671864583600001, −6.31376271112230576625519630596, −5.55058267506529268713362678327, −4.92395331212686291950472319307, −3.82844694626200613701514838124, −3.16039042154847503047624020435, −2.00139176724287747848757418899, −0.52054713672409666411604741362,
0.52054713672409666411604741362, 2.00139176724287747848757418899, 3.16039042154847503047624020435, 3.82844694626200613701514838124, 4.92395331212686291950472319307, 5.55058267506529268713362678327, 6.31376271112230576625519630596, 7.01608618441703671864583600001, 7.82448368747913391276430948485, 8.608740568697848080864230626915