Properties

Label 2-3520-1.1-c1-0-6
Degree $2$
Conductor $3520$
Sign $1$
Analytic cond. $28.1073$
Root an. cond. $5.30163$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s − 2·9-s − 11-s + 2·13-s + 15-s − 5·17-s + 7·19-s + 21-s − 6·23-s + 25-s + 5·27-s + 29-s − 5·31-s + 33-s + 35-s − 11·37-s − 2·39-s + 2·41-s − 4·43-s + 2·45-s + 6·47-s − 6·49-s + 5·51-s + 53-s + 55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.377·7-s − 2/3·9-s − 0.301·11-s + 0.554·13-s + 0.258·15-s − 1.21·17-s + 1.60·19-s + 0.218·21-s − 1.25·23-s + 1/5·25-s + 0.962·27-s + 0.185·29-s − 0.898·31-s + 0.174·33-s + 0.169·35-s − 1.80·37-s − 0.320·39-s + 0.312·41-s − 0.609·43-s + 0.298·45-s + 0.875·47-s − 6/7·49-s + 0.700·51-s + 0.137·53-s + 0.134·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3520\)    =    \(2^{6} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(28.1073\)
Root analytic conductor: \(5.30163\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3520,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7944844712\)
\(L(\frac12)\) \(\approx\) \(0.7944844712\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
good3 \( 1 + T + p T^{2} \)
7 \( 1 + T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 5 T + p T^{2} \)
19 \( 1 - 7 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - T + p T^{2} \)
31 \( 1 + 5 T + p T^{2} \)
37 \( 1 + 11 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - T + p T^{2} \)
59 \( 1 - 10 T + p T^{2} \)
61 \( 1 + 5 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 - 9 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 17 T + p T^{2} \)
97 \( 1 - 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.608740568697848080864230626915, −7.82448368747913391276430948485, −7.01608618441703671864583600001, −6.31376271112230576625519630596, −5.55058267506529268713362678327, −4.92395331212686291950472319307, −3.82844694626200613701514838124, −3.16039042154847503047624020435, −2.00139176724287747848757418899, −0.52054713672409666411604741362, 0.52054713672409666411604741362, 2.00139176724287747848757418899, 3.16039042154847503047624020435, 3.82844694626200613701514838124, 4.92395331212686291950472319307, 5.55058267506529268713362678327, 6.31376271112230576625519630596, 7.01608618441703671864583600001, 7.82448368747913391276430948485, 8.608740568697848080864230626915

Graph of the $Z$-function along the critical line