L(s) = 1 | + (−0.258 − 0.965i)2-s + (−0.866 + 0.499i)4-s + (0.707 + 0.707i)8-s + (−1.22 + 0.707i)11-s + (0.500 − 0.866i)16-s + (1 + 0.999i)22-s + (−0.707 + 1.22i)23-s + (−0.5 − 0.866i)25-s − 1.41·29-s + (−0.965 − 0.258i)32-s + (−1.73 − i)37-s + (0.707 − 1.22i)44-s + (1.36 + 0.366i)46-s + (−0.707 + 0.707i)50-s + (−0.707 − 1.22i)53-s + ⋯ |
L(s) = 1 | + (−0.258 − 0.965i)2-s + (−0.866 + 0.499i)4-s + (0.707 + 0.707i)8-s + (−1.22 + 0.707i)11-s + (0.500 − 0.866i)16-s + (1 + 0.999i)22-s + (−0.707 + 1.22i)23-s + (−0.5 − 0.866i)25-s − 1.41·29-s + (−0.965 − 0.258i)32-s + (−1.73 − i)37-s + (0.707 − 1.22i)44-s + (1.36 + 0.366i)46-s + (−0.707 + 0.707i)50-s + (−0.707 − 1.22i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.405 - 0.914i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.405 - 0.914i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1131025345\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1131025345\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.258 + 0.965i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + 1.41T + T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (1.73 + i)T + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + 1.41T + T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.153246410293632410566568159584, −8.271064660624387123923054650072, −7.69787018187870911564938471686, −7.04546056968344386393238530180, −5.66382798646927626819940975365, −5.17584554472534923750116087012, −4.16292213489820264935238902346, −3.46883528625518137505445595394, −2.38614415516310752368940977267, −1.72795365529004449695429138533,
0.06837937282000647650238937318, 1.72432674491784480502389804280, 3.05552205755259613898249554663, 4.01122675619973942491815886913, 4.99060853986606109168887191656, 5.57353560581480851815006888905, 6.26933471810995962568391421931, 7.11227894207126052096738218755, 7.84686071608115768448706681655, 8.326545082606151271369983132312