L(s) = 1 | + (−0.258 − 0.965i)2-s + (−0.866 + 0.499i)4-s + (0.707 + 0.707i)8-s + (−1.22 + 0.707i)11-s + (0.500 − 0.866i)16-s + (1 + 0.999i)22-s + (−0.707 + 1.22i)23-s + (−0.5 − 0.866i)25-s − 1.41·29-s + (−0.965 − 0.258i)32-s + (−1.73 − i)37-s + (0.707 − 1.22i)44-s + (1.36 + 0.366i)46-s + (−0.707 + 0.707i)50-s + (−0.707 − 1.22i)53-s + ⋯ |
L(s) = 1 | + (−0.258 − 0.965i)2-s + (−0.866 + 0.499i)4-s + (0.707 + 0.707i)8-s + (−1.22 + 0.707i)11-s + (0.500 − 0.866i)16-s + (1 + 0.999i)22-s + (−0.707 + 1.22i)23-s + (−0.5 − 0.866i)25-s − 1.41·29-s + (−0.965 − 0.258i)32-s + (−1.73 − i)37-s + (0.707 − 1.22i)44-s + (1.36 + 0.366i)46-s + (−0.707 + 0.707i)50-s + (−0.707 − 1.22i)53-s + ⋯ |
Λ(s)=(=(3528s/2ΓC(s)L(s)(−0.405−0.914i)Λ(1−s)
Λ(s)=(=(3528s/2ΓC(s)L(s)(−0.405−0.914i)Λ(1−s)
Degree: |
2 |
Conductor: |
3528
= 23⋅32⋅72
|
Sign: |
−0.405−0.914i
|
Analytic conductor: |
1.76070 |
Root analytic conductor: |
1.32691 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3528(1979,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3528, ( :0), −0.405−0.914i)
|
Particular Values
L(21) |
≈ |
0.1131025345 |
L(21) |
≈ |
0.1131025345 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.258+0.965i)T |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+(0.5+0.866i)T2 |
| 11 | 1+(1.22−0.707i)T+(0.5−0.866i)T2 |
| 13 | 1+T2 |
| 17 | 1+(−0.5+0.866i)T2 |
| 19 | 1+(0.5+0.866i)T2 |
| 23 | 1+(0.707−1.22i)T+(−0.5−0.866i)T2 |
| 29 | 1+1.41T+T2 |
| 31 | 1+(−0.5+0.866i)T2 |
| 37 | 1+(1.73+i)T+(0.5+0.866i)T2 |
| 41 | 1+T2 |
| 43 | 1+T2 |
| 47 | 1+(0.5+0.866i)T2 |
| 53 | 1+(0.707+1.22i)T+(−0.5+0.866i)T2 |
| 59 | 1+(−0.5+0.866i)T2 |
| 61 | 1+(−0.5−0.866i)T2 |
| 67 | 1+(−1−1.73i)T+(−0.5+0.866i)T2 |
| 71 | 1+1.41T+T2 |
| 73 | 1+(0.5−0.866i)T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1+T2 |
| 89 | 1+(−0.5−0.866i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.153246410293632410566568159584, −8.271064660624387123923054650072, −7.69787018187870911564938471686, −7.04546056968344386393238530180, −5.66382798646927626819940975365, −5.17584554472534923750116087012, −4.16292213489820264935238902346, −3.46883528625518137505445595394, −2.38614415516310752368940977267, −1.72795365529004449695429138533,
0.06837937282000647650238937318, 1.72432674491784480502389804280, 3.05552205755259613898249554663, 4.01122675619973942491815886913, 4.99060853986606109168887191656, 5.57353560581480851815006888905, 6.26933471810995962568391421931, 7.11227894207126052096738218755, 7.84686071608115768448706681655, 8.326545082606151271369983132312