L(s) = 1 | + (0.258 − 0.965i)2-s + (−0.866 − 0.499i)4-s + (−0.707 + 0.707i)8-s + (1.22 + 0.707i)11-s + (0.500 + 0.866i)16-s + (1 − 0.999i)22-s + (0.707 + 1.22i)23-s + (−0.5 + 0.866i)25-s + 1.41·29-s + (0.965 − 0.258i)32-s + (−1.73 + i)37-s + (−0.707 − 1.22i)44-s + (1.36 − 0.366i)46-s + (0.707 + 0.707i)50-s + (0.707 − 1.22i)53-s + ⋯ |
L(s) = 1 | + (0.258 − 0.965i)2-s + (−0.866 − 0.499i)4-s + (−0.707 + 0.707i)8-s + (1.22 + 0.707i)11-s + (0.500 + 0.866i)16-s + (1 − 0.999i)22-s + (0.707 + 1.22i)23-s + (−0.5 + 0.866i)25-s + 1.41·29-s + (0.965 − 0.258i)32-s + (−1.73 + i)37-s + (−0.707 − 1.22i)44-s + (1.36 − 0.366i)46-s + (0.707 + 0.707i)50-s + (0.707 − 1.22i)53-s + ⋯ |
Λ(s)=(=(3528s/2ΓC(s)L(s)(0.726+0.686i)Λ(1−s)
Λ(s)=(=(3528s/2ΓC(s)L(s)(0.726+0.686i)Λ(1−s)
Degree: |
2 |
Conductor: |
3528
= 23⋅32⋅72
|
Sign: |
0.726+0.686i
|
Analytic conductor: |
1.76070 |
Root analytic conductor: |
1.32691 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3528(1403,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3528, ( :0), 0.726+0.686i)
|
Particular Values
L(21) |
≈ |
1.380222521 |
L(21) |
≈ |
1.380222521 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.258+0.965i)T |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+(0.5−0.866i)T2 |
| 11 | 1+(−1.22−0.707i)T+(0.5+0.866i)T2 |
| 13 | 1+T2 |
| 17 | 1+(−0.5−0.866i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(−0.707−1.22i)T+(−0.5+0.866i)T2 |
| 29 | 1−1.41T+T2 |
| 31 | 1+(−0.5−0.866i)T2 |
| 37 | 1+(1.73−i)T+(0.5−0.866i)T2 |
| 41 | 1+T2 |
| 43 | 1+T2 |
| 47 | 1+(0.5−0.866i)T2 |
| 53 | 1+(−0.707+1.22i)T+(−0.5−0.866i)T2 |
| 59 | 1+(−0.5−0.866i)T2 |
| 61 | 1+(−0.5+0.866i)T2 |
| 67 | 1+(−1+1.73i)T+(−0.5−0.866i)T2 |
| 71 | 1−1.41T+T2 |
| 73 | 1+(0.5+0.866i)T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1+T2 |
| 89 | 1+(−0.5+0.866i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.884555574498939132497389245930, −8.136196113736627041831518184045, −7.05569232645121408037593434522, −6.43562764158603928984961105537, −5.34700900326431833109729184901, −4.79673297294158031673034203932, −3.79875582812275682665550535434, −3.26899926929455470983045365633, −2.01885182563312885816428248709, −1.23844819419050847025256862902,
0.904979083194529587460774075689, 2.58966208542478317743268166827, 3.64685249252020382249505325622, 4.28117733334761202681365142535, 5.14116651855249354344358343557, 5.99713625458241546657323341157, 6.62475416398687705227348808946, 7.12434524397168184543890269904, 8.225596442969306602008673647371, 8.650139706603085326025513958949