L(s) = 1 | + (0.258 − 0.965i)2-s + (−0.866 − 0.499i)4-s + (−0.707 + 0.707i)8-s + (1.22 + 0.707i)11-s + (0.500 + 0.866i)16-s + (1 − 0.999i)22-s + (0.707 + 1.22i)23-s + (−0.5 + 0.866i)25-s + 1.41·29-s + (0.965 − 0.258i)32-s + (−1.73 + i)37-s + (−0.707 − 1.22i)44-s + (1.36 − 0.366i)46-s + (0.707 + 0.707i)50-s + (0.707 − 1.22i)53-s + ⋯ |
L(s) = 1 | + (0.258 − 0.965i)2-s + (−0.866 − 0.499i)4-s + (−0.707 + 0.707i)8-s + (1.22 + 0.707i)11-s + (0.500 + 0.866i)16-s + (1 − 0.999i)22-s + (0.707 + 1.22i)23-s + (−0.5 + 0.866i)25-s + 1.41·29-s + (0.965 − 0.258i)32-s + (−1.73 + i)37-s + (−0.707 − 1.22i)44-s + (1.36 − 0.366i)46-s + (0.707 + 0.707i)50-s + (0.707 − 1.22i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.726 + 0.686i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.726 + 0.686i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.380222521\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.380222521\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.258 + 0.965i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 - 1.41T + T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (1.73 - i)T + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - 1.41T + T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.884555574498939132497389245930, −8.136196113736627041831518184045, −7.05569232645121408037593434522, −6.43562764158603928984961105537, −5.34700900326431833109729184901, −4.79673297294158031673034203932, −3.79875582812275682665550535434, −3.26899926929455470983045365633, −2.01885182563312885816428248709, −1.23844819419050847025256862902,
0.904979083194529587460774075689, 2.58966208542478317743268166827, 3.64685249252020382249505325622, 4.28117733334761202681365142535, 5.14116651855249354344358343557, 5.99713625458241546657323341157, 6.62475416398687705227348808946, 7.12434524397168184543890269904, 8.225596442969306602008673647371, 8.650139706603085326025513958949