L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (0.707 − 0.707i)8-s − 1.41·11-s − 1.00·16-s + (1.00 + 1.00i)22-s − 1.41i·23-s − 25-s − 1.41·29-s + (0.707 + 0.707i)32-s + 2i·37-s − 2i·43-s − 1.41i·44-s + (−1.00 + 1.00i)46-s + (0.707 + 0.707i)50-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (0.707 − 0.707i)8-s − 1.41·11-s − 1.00·16-s + (1.00 + 1.00i)22-s − 1.41i·23-s − 25-s − 1.41·29-s + (0.707 + 0.707i)32-s + 2i·37-s − 2i·43-s − 1.41i·44-s + (−1.00 + 1.00i)46-s + (0.707 + 0.707i)50-s + ⋯ |
Λ(s)=(=(3528s/2ΓC(s)L(s)(−0.985−0.169i)Λ(1−s)
Λ(s)=(=(3528s/2ΓC(s)L(s)(−0.985−0.169i)Λ(1−s)
Degree: |
2 |
Conductor: |
3528
= 23⋅32⋅72
|
Sign: |
−0.985−0.169i
|
Analytic conductor: |
1.76070 |
Root analytic conductor: |
1.32691 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3528(197,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3528, ( :0), −0.985−0.169i)
|
Particular Values
L(21) |
≈ |
0.1905053094 |
L(21) |
≈ |
0.1905053094 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707+0.707i)T |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+T2 |
| 11 | 1+1.41T+T2 |
| 13 | 1−T2 |
| 17 | 1−T2 |
| 19 | 1−T2 |
| 23 | 1+1.41iT−T2 |
| 29 | 1+1.41T+T2 |
| 31 | 1+T2 |
| 37 | 1−2iT−T2 |
| 41 | 1−T2 |
| 43 | 1+2iT−T2 |
| 47 | 1−T2 |
| 53 | 1+1.41T+T2 |
| 59 | 1+T2 |
| 61 | 1−T2 |
| 67 | 1−T2 |
| 71 | 1+1.41iT−T2 |
| 73 | 1+T2 |
| 79 | 1+2T+T2 |
| 83 | 1+T2 |
| 89 | 1−T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.378538841430262635017221725683, −7.82975588358122350536019560752, −7.15820660341272734156273639287, −6.21607743308674196319828175543, −5.20559925027765817120152208585, −4.39548234458146003576983714281, −3.41054478746214282874386287356, −2.59043182858815207006197770108, −1.75441314570331899574368621344, −0.13299040740965585101162682182,
1.57325743811055333423216118893, 2.55334368382664277380309793610, 3.78433654928380714870820229851, 4.86566617807112408505781935175, 5.62172937055521596787328557526, 6.03956018819755531990388225411, 7.28488622847550263371532109516, 7.60579720839669954640074633674, 8.214374287766958627495451252801, 9.184631271161157954234269190776