L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (0.707 − 0.707i)8-s − 1.41·11-s − 1.00·16-s + (1.00 + 1.00i)22-s − 1.41i·23-s − 25-s − 1.41·29-s + (0.707 + 0.707i)32-s + 2i·37-s − 2i·43-s − 1.41i·44-s + (−1.00 + 1.00i)46-s + (0.707 + 0.707i)50-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (0.707 − 0.707i)8-s − 1.41·11-s − 1.00·16-s + (1.00 + 1.00i)22-s − 1.41i·23-s − 25-s − 1.41·29-s + (0.707 + 0.707i)32-s + 2i·37-s − 2i·43-s − 1.41i·44-s + (−1.00 + 1.00i)46-s + (0.707 + 0.707i)50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.985 - 0.169i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.985 - 0.169i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1905053094\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1905053094\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + T^{2} \) |
| 11 | \( 1 + 1.41T + T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + 1.41iT - T^{2} \) |
| 29 | \( 1 + 1.41T + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - 2iT - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + 2iT - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + 1.41T + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + 1.41iT - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + 2T + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.378538841430262635017221725683, −7.82975588358122350536019560752, −7.15820660341272734156273639287, −6.21607743308674196319828175543, −5.20559925027765817120152208585, −4.39548234458146003576983714281, −3.41054478746214282874386287356, −2.59043182858815207006197770108, −1.75441314570331899574368621344, −0.13299040740965585101162682182,
1.57325743811055333423216118893, 2.55334368382664277380309793610, 3.78433654928380714870820229851, 4.86566617807112408505781935175, 5.62172937055521596787328557526, 6.03956018819755531990388225411, 7.28488622847550263371532109516, 7.60579720839669954640074633674, 8.214374287766958627495451252801, 9.184631271161157954234269190776