L(s) = 1 | + 1.41i·5-s + 1.41i·11-s − 13-s − 19-s − 1.00·25-s − 31-s + 37-s + 1.41i·41-s − 43-s − 1.41i·47-s − 2.00·55-s − 1.41i·65-s − 67-s − 1.41i·71-s + 73-s + ⋯ |
L(s) = 1 | + 1.41i·5-s + 1.41i·11-s − 13-s − 19-s − 1.00·25-s − 31-s + 37-s + 1.41i·41-s − 43-s − 1.41i·47-s − 2.00·55-s − 1.41i·65-s − 67-s − 1.41i·71-s + 73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.816 - 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.816 - 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8349895706\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8349895706\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 1.41iT - T^{2} \) |
| 11 | \( 1 - 1.41iT - T^{2} \) |
| 13 | \( 1 + T + T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( 1 - T + T^{2} \) |
| 41 | \( 1 - 1.41iT - T^{2} \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( 1 + 1.41iT - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + T + T^{2} \) |
| 71 | \( 1 + 1.41iT - T^{2} \) |
| 73 | \( 1 - T + T^{2} \) |
| 79 | \( 1 - T + T^{2} \) |
| 83 | \( 1 - 1.41iT - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.249313022419241038025943340773, −8.071865626468637297677640735748, −7.47276049556730283720575287328, −6.80349605717747208566743382481, −6.37456668973445692327809245241, −5.20220034525360588401754815157, −4.45604792239740404381996476053, −3.52989060463489979234613393059, −2.54109836783216901845155411096, −1.95146520649301826951840366306,
0.45868234328069865893421138394, 1.69635927657562640312497724338, 2.83693049799606661499954259705, 3.93163565521617200024834074640, 4.65674984675802056763699125099, 5.43540895051689889280931443875, 6.00731598375258856756709413835, 7.01577948241989213884263781450, 7.946776818528765003728186015330, 8.484203178123183192353498170526