L(s) = 1 | + 1.41i·5-s + 1.41i·11-s − 13-s − 19-s − 1.00·25-s − 31-s + 37-s + 1.41i·41-s − 43-s − 1.41i·47-s − 2.00·55-s − 1.41i·65-s − 67-s − 1.41i·71-s + 73-s + ⋯ |
L(s) = 1 | + 1.41i·5-s + 1.41i·11-s − 13-s − 19-s − 1.00·25-s − 31-s + 37-s + 1.41i·41-s − 43-s − 1.41i·47-s − 2.00·55-s − 1.41i·65-s − 67-s − 1.41i·71-s + 73-s + ⋯ |
Λ(s)=(=(3528s/2ΓC(s)L(s)(−0.816−0.577i)Λ(1−s)
Λ(s)=(=(3528s/2ΓC(s)L(s)(−0.816−0.577i)Λ(1−s)
Degree: |
2 |
Conductor: |
3528
= 23⋅32⋅72
|
Sign: |
−0.816−0.577i
|
Analytic conductor: |
1.76070 |
Root analytic conductor: |
1.32691 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3528(1961,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3528, ( :0), −0.816−0.577i)
|
Particular Values
L(21) |
≈ |
0.8349895706 |
L(21) |
≈ |
0.8349895706 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1−1.41iT−T2 |
| 11 | 1−1.41iT−T2 |
| 13 | 1+T+T2 |
| 17 | 1−T2 |
| 19 | 1+T+T2 |
| 23 | 1−T2 |
| 29 | 1−T2 |
| 31 | 1+T+T2 |
| 37 | 1−T+T2 |
| 41 | 1−1.41iT−T2 |
| 43 | 1+T+T2 |
| 47 | 1+1.41iT−T2 |
| 53 | 1−T2 |
| 59 | 1−T2 |
| 61 | 1+T2 |
| 67 | 1+T+T2 |
| 71 | 1+1.41iT−T2 |
| 73 | 1−T+T2 |
| 79 | 1−T+T2 |
| 83 | 1−1.41iT−T2 |
| 89 | 1−T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.249313022419241038025943340773, −8.071865626468637297677640735748, −7.47276049556730283720575287328, −6.80349605717747208566743382481, −6.37456668973445692327809245241, −5.20220034525360588401754815157, −4.45604792239740404381996476053, −3.52989060463489979234613393059, −2.54109836783216901845155411096, −1.95146520649301826951840366306,
0.45868234328069865893421138394, 1.69635927657562640312497724338, 2.83693049799606661499954259705, 3.93163565521617200024834074640, 4.65674984675802056763699125099, 5.43540895051689889280931443875, 6.00731598375258856756709413835, 7.01577948241989213884263781450, 7.946776818528765003728186015330, 8.484203178123183192353498170526