L(s) = 1 | + (0.433 + 0.900i)2-s + (−0.623 + 0.781i)4-s + (0.193 − 0.846i)5-s + (−0.222 − 0.974i)7-s + (−0.974 − 0.222i)8-s + (0.846 − 0.193i)10-s + (0.541 + 1.12i)11-s + (0.781 − 0.623i)14-s + (−0.222 − 0.974i)16-s + (0.541 + 0.678i)20-s + (−0.777 + 0.974i)22-s + (0.222 + 0.107i)25-s + (0.900 + 0.433i)28-s + (1.40 − 1.12i)29-s − 1.94i·31-s + (0.781 − 0.623i)32-s + ⋯ |
L(s) = 1 | + (0.433 + 0.900i)2-s + (−0.623 + 0.781i)4-s + (0.193 − 0.846i)5-s + (−0.222 − 0.974i)7-s + (−0.974 − 0.222i)8-s + (0.846 − 0.193i)10-s + (0.541 + 1.12i)11-s + (0.781 − 0.623i)14-s + (−0.222 − 0.974i)16-s + (0.541 + 0.678i)20-s + (−0.777 + 0.974i)22-s + (0.222 + 0.107i)25-s + (0.900 + 0.433i)28-s + (1.40 − 1.12i)29-s − 1.94i·31-s + (0.781 − 0.623i)32-s + ⋯ |
Λ(s)=(=(3528s/2ΓC(s)L(s)(0.926−0.375i)Λ(1−s)
Λ(s)=(=(3528s/2ΓC(s)L(s)(0.926−0.375i)Λ(1−s)
Degree: |
2 |
Conductor: |
3528
= 23⋅32⋅72
|
Sign: |
0.926−0.375i
|
Analytic conductor: |
1.76070 |
Root analytic conductor: |
1.32691 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3528(1693,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3528, ( :0), 0.926−0.375i)
|
Particular Values
L(21) |
≈ |
1.502729332 |
L(21) |
≈ |
1.502729332 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.433−0.900i)T |
| 3 | 1 |
| 7 | 1+(0.222+0.974i)T |
good | 5 | 1+(−0.193+0.846i)T+(−0.900−0.433i)T2 |
| 11 | 1+(−0.541−1.12i)T+(−0.623+0.781i)T2 |
| 13 | 1+(0.623−0.781i)T2 |
| 17 | 1+(0.222−0.974i)T2 |
| 19 | 1+T2 |
| 23 | 1+(−0.222−0.974i)T2 |
| 29 | 1+(−1.40+1.12i)T+(0.222−0.974i)T2 |
| 31 | 1+1.94iT−T2 |
| 37 | 1+(0.222−0.974i)T2 |
| 41 | 1+(0.900+0.433i)T2 |
| 43 | 1+(0.900−0.433i)T2 |
| 47 | 1+(−0.623+0.781i)T2 |
| 53 | 1+(−1.56−1.24i)T+(0.222+0.974i)T2 |
| 59 | 1+(−0.900+0.433i)T2 |
| 61 | 1+(−0.222+0.974i)T2 |
| 67 | 1−T2 |
| 71 | 1+(−0.222−0.974i)T2 |
| 73 | 1+(−0.846+1.75i)T+(−0.623−0.781i)T2 |
| 79 | 1−0.445T+T2 |
| 83 | 1+(−0.781−0.376i)T+(0.623+0.781i)T2 |
| 89 | 1+(−0.623−0.781i)T2 |
| 97 | 1+1.56iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.665299418752631944434864300281, −7.86854431581737041682165029058, −7.31307631696430860441137963471, −6.55032241723677504307022348627, −5.89852667128194701797790139800, −4.84085136285845607421408380143, −4.39250357269709809794190844371, −3.73284691530471343820472450027, −2.40622912982353829128922000849, −0.905173479951639148071386051799,
1.23990138328281876009946041289, 2.48287025638223140086078280845, 3.07888894101403832649915186550, 3.72709184483644822331654919368, 4.98076867672780404985658289451, 5.54499249989146292641485466570, 6.48604826945366230895502316808, 6.79529359804729337948407726883, 8.456463592717712572055569693144, 8.668748480650094934772638393798