L(s) = 1 | + (0.866 + 0.5i)2-s + (−0.866 + 0.5i)3-s + (0.866 + 0.5i)5-s − 0.999·6-s + (0.5 − 0.866i)7-s − i·8-s + (0.499 − 0.866i)9-s + (0.499 + 0.866i)10-s + (0.866 − 0.499i)14-s − 0.999·15-s + (0.5 − 0.866i)16-s + (−0.866 + 0.5i)17-s + (0.866 − 0.499i)18-s + 0.999i·21-s + (0.866 + 0.5i)23-s + (0.500 + 0.866i)24-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (−0.866 + 0.5i)3-s + (0.866 + 0.5i)5-s − 0.999·6-s + (0.5 − 0.866i)7-s − i·8-s + (0.499 − 0.866i)9-s + (0.499 + 0.866i)10-s + (0.866 − 0.499i)14-s − 0.999·15-s + (0.5 − 0.866i)16-s + (−0.866 + 0.5i)17-s + (0.866 − 0.499i)18-s + 0.999i·21-s + (0.866 + 0.5i)23-s + (0.500 + 0.866i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3549 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0633i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3549 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0633i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.745655844\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.745655844\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + iT - T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + iT - T^{2} \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - iT - T^{2} \) |
| 73 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.981654196578344938069948324397, −7.58711698941694326817981893621, −6.99529117170494004340601762642, −6.25736525739070097178661276442, −5.75498117445487873371770651125, −5.08736872898104167330005748207, −4.15644397995543290419976810357, −3.86824556852502356809292992330, −2.32622147804246965531194554793, −0.944096726641429801040237829216,
1.44005862046710614988005490001, 2.22168550145716425123315655499, 3.05918275912218564190744286965, 4.53438768286729147973005780310, 4.91216716290624993071109739580, 5.54347531447502642399740918064, 6.17714019574574606602296400339, 7.08702646211805955442728500833, 8.006901599910303953208350087610, 8.867118623682439267179453959178