L(s) = 1 | + (0.866 + 0.5i)2-s + (−0.866 + 0.5i)3-s + (0.866 + 0.5i)5-s − 0.999·6-s + (0.5 − 0.866i)7-s − i·8-s + (0.499 − 0.866i)9-s + (0.499 + 0.866i)10-s + (0.866 − 0.499i)14-s − 0.999·15-s + (0.5 − 0.866i)16-s + (−0.866 + 0.5i)17-s + (0.866 − 0.499i)18-s + 0.999i·21-s + (0.866 + 0.5i)23-s + (0.500 + 0.866i)24-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (−0.866 + 0.5i)3-s + (0.866 + 0.5i)5-s − 0.999·6-s + (0.5 − 0.866i)7-s − i·8-s + (0.499 − 0.866i)9-s + (0.499 + 0.866i)10-s + (0.866 − 0.499i)14-s − 0.999·15-s + (0.5 − 0.866i)16-s + (−0.866 + 0.5i)17-s + (0.866 − 0.499i)18-s + 0.999i·21-s + (0.866 + 0.5i)23-s + (0.500 + 0.866i)24-s + ⋯ |
Λ(s)=(=(3549s/2ΓC(s)L(s)(0.997−0.0633i)Λ(1−s)
Λ(s)=(=(3549s/2ΓC(s)L(s)(0.997−0.0633i)Λ(1−s)
Degree: |
2 |
Conductor: |
3549
= 3⋅7⋅132
|
Sign: |
0.997−0.0633i
|
Analytic conductor: |
1.77118 |
Root analytic conductor: |
1.33085 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3549(170,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3549, ( :0), 0.997−0.0633i)
|
Particular Values
L(21) |
≈ |
1.745655844 |
L(21) |
≈ |
1.745655844 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.866−0.5i)T |
| 7 | 1+(−0.5+0.866i)T |
| 13 | 1 |
good | 2 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 5 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 11 | 1+(0.5−0.866i)T2 |
| 17 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 19 | 1+(−0.5−0.866i)T2 |
| 23 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 29 | 1+iT−T2 |
| 31 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 37 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 41 | 1+iT−T2 |
| 43 | 1−T+T2 |
| 47 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 53 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 59 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 61 | 1+(−0.5−0.866i)T2 |
| 67 | 1+(−0.5+0.866i)T2 |
| 71 | 1−iT−T2 |
| 73 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 79 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 97 | 1−T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.981654196578344938069948324397, −7.58711698941694326817981893621, −6.99529117170494004340601762642, −6.25736525739070097178661276442, −5.75498117445487873371770651125, −5.08736872898104167330005748207, −4.15644397995543290419976810357, −3.86824556852502356809292992330, −2.32622147804246965531194554793, −0.944096726641429801040237829216,
1.44005862046710614988005490001, 2.22168550145716425123315655499, 3.05918275912218564190744286965, 4.53438768286729147973005780310, 4.91216716290624993071109739580, 5.54347531447502642399740918064, 6.17714019574574606602296400339, 7.08702646211805955442728500833, 8.006901599910303953208350087610, 8.867118623682439267179453959178