L(s) = 1 | + (0.5 − 0.866i)3-s + 4-s + (0.866 + 0.5i)7-s + (−0.499 − 0.866i)9-s + (0.5 − 0.866i)12-s + 16-s + (0.866 + 1.5i)19-s + (0.866 − 0.499i)21-s + (−0.5 − 0.866i)25-s − 0.999·27-s + (0.866 + 0.5i)28-s + (−0.499 − 0.866i)36-s − 1.73·37-s + (−0.5 + 0.866i)43-s + (0.5 − 0.866i)48-s + (0.499 + 0.866i)49-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)3-s + 4-s + (0.866 + 0.5i)7-s + (−0.499 − 0.866i)9-s + (0.5 − 0.866i)12-s + 16-s + (0.866 + 1.5i)19-s + (0.866 − 0.499i)21-s + (−0.5 − 0.866i)25-s − 0.999·27-s + (0.866 + 0.5i)28-s + (−0.499 − 0.866i)36-s − 1.73·37-s + (−0.5 + 0.866i)43-s + (0.5 − 0.866i)48-s + (0.499 + 0.866i)49-s + ⋯ |
Λ(s)=(=(3549s/2ΓC(s)L(s)(0.795+0.606i)Λ(1−s)
Λ(s)=(=(3549s/2ΓC(s)L(s)(0.795+0.606i)Λ(1−s)
Degree: |
2 |
Conductor: |
3549
= 3⋅7⋅132
|
Sign: |
0.795+0.606i
|
Analytic conductor: |
1.77118 |
Root analytic conductor: |
1.33085 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3549(653,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3549, ( :0), 0.795+0.606i)
|
Particular Values
L(21) |
≈ |
2.117870530 |
L(21) |
≈ |
2.117870530 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.5+0.866i)T |
| 7 | 1+(−0.866−0.5i)T |
| 13 | 1 |
good | 2 | 1−T2 |
| 5 | 1+(0.5+0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 17 | 1−T2 |
| 19 | 1+(−0.866−1.5i)T+(−0.5+0.866i)T2 |
| 23 | 1−T2 |
| 29 | 1+(0.5−0.866i)T2 |
| 31 | 1+(−0.5+0.866i)T2 |
| 37 | 1+1.73T+T2 |
| 41 | 1+(0.5−0.866i)T2 |
| 43 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 47 | 1+(0.5+0.866i)T2 |
| 53 | 1+(0.5−0.866i)T2 |
| 59 | 1−T2 |
| 61 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 67 | 1+(−0.5−0.866i)T2 |
| 71 | 1+(0.5+0.866i)T2 |
| 73 | 1+(0.866+1.5i)T+(−0.5+0.866i)T2 |
| 79 | 1+(−1+1.73i)T+(−0.5−0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1−T2 |
| 97 | 1+(0.866−1.5i)T+(−0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.341842528308810192943256738778, −7.902633802517985344660599191744, −7.36004614322624536984571652335, −6.43724257513246240896657147336, −5.90163661378742136935363834672, −5.07343058786051468287813564611, −3.72640027700614220744431703369, −2.95093374238459842463127869838, −1.96862948860913271434557356564, −1.44758545457071734627694642464,
1.47581233420672987487139748645, 2.46498373550549570187149213201, 3.30505441354777963907830174650, 4.10490824913838260422917459534, 5.13001649403389599936093179948, 5.52867993822262665495069683566, 6.89457867441687247974530042758, 7.30015289833782051475192831177, 8.097402233640984565259955108212, 8.785988489396381686628353237494