L(s) = 1 | + (0.5 − 0.866i)3-s + 4-s + (0.866 + 0.5i)7-s + (−0.499 − 0.866i)9-s + (0.5 − 0.866i)12-s + 16-s + (0.866 + 1.5i)19-s + (0.866 − 0.499i)21-s + (−0.5 − 0.866i)25-s − 0.999·27-s + (0.866 + 0.5i)28-s + (−0.499 − 0.866i)36-s − 1.73·37-s + (−0.5 + 0.866i)43-s + (0.5 − 0.866i)48-s + (0.499 + 0.866i)49-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)3-s + 4-s + (0.866 + 0.5i)7-s + (−0.499 − 0.866i)9-s + (0.5 − 0.866i)12-s + 16-s + (0.866 + 1.5i)19-s + (0.866 − 0.499i)21-s + (−0.5 − 0.866i)25-s − 0.999·27-s + (0.866 + 0.5i)28-s + (−0.499 − 0.866i)36-s − 1.73·37-s + (−0.5 + 0.866i)43-s + (0.5 − 0.866i)48-s + (0.499 + 0.866i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3549 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.795 + 0.606i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3549 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.795 + 0.606i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.117870530\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.117870530\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 - T^{2} \) |
| 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + 1.73T + T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.341842528308810192943256738778, −7.902633802517985344660599191744, −7.36004614322624536984571652335, −6.43724257513246240896657147336, −5.90163661378742136935363834672, −5.07343058786051468287813564611, −3.72640027700614220744431703369, −2.95093374238459842463127869838, −1.96862948860913271434557356564, −1.44758545457071734627694642464,
1.47581233420672987487139748645, 2.46498373550549570187149213201, 3.30505441354777963907830174650, 4.10490824913838260422917459534, 5.13001649403389599936093179948, 5.52867993822262665495069683566, 6.89457867441687247974530042758, 7.30015289833782051475192831177, 8.097402233640984565259955108212, 8.785988489396381686628353237494