L(s) = 1 | − i·2-s + (0.866 + 0.5i)3-s + (0.866 + 0.5i)5-s + (0.5 − 0.866i)6-s + (0.5 + 0.866i)7-s − i·8-s + (0.499 + 0.866i)9-s + (0.5 − 0.866i)10-s + (0.866 − 0.5i)14-s + (0.499 + 0.866i)15-s − 16-s − i·17-s + (0.866 − 0.499i)18-s + 0.999i·21-s − i·23-s + (0.5 − 0.866i)24-s + ⋯ |
L(s) = 1 | − i·2-s + (0.866 + 0.5i)3-s + (0.866 + 0.5i)5-s + (0.5 − 0.866i)6-s + (0.5 + 0.866i)7-s − i·8-s + (0.499 + 0.866i)9-s + (0.5 − 0.866i)10-s + (0.866 − 0.5i)14-s + (0.499 + 0.866i)15-s − 16-s − i·17-s + (0.866 − 0.499i)18-s + 0.999i·21-s − i·23-s + (0.5 − 0.866i)24-s + ⋯ |
Λ(s)=(=(3549s/2ΓC(s)L(s)(0.890+0.455i)Λ(1−s)
Λ(s)=(=(3549s/2ΓC(s)L(s)(0.890+0.455i)Λ(1−s)
Degree: |
2 |
Conductor: |
3549
= 3⋅7⋅132
|
Sign: |
0.890+0.455i
|
Analytic conductor: |
1.77118 |
Root analytic conductor: |
1.33085 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3549(653,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3549, ( :0), 0.890+0.455i)
|
Particular Values
L(21) |
≈ |
2.354163626 |
L(21) |
≈ |
2.354163626 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.866−0.5i)T |
| 7 | 1+(−0.5−0.866i)T |
| 13 | 1 |
good | 2 | 1+iT−T2 |
| 5 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 17 | 1+iT−T2 |
| 19 | 1+(−0.5+0.866i)T2 |
| 23 | 1+iT−T2 |
| 29 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 31 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 37 | 1+T+T2 |
| 41 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 43 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 47 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 53 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 59 | 1+iT−T2 |
| 61 | 1+(−0.5+0.866i)T2 |
| 67 | 1+(−0.5−0.866i)T2 |
| 71 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 73 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 79 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+iT−T2 |
| 97 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.991467412249484123187020495466, −8.164161465233552998286858413943, −7.25029354575051837693259463267, −6.50272159461540931910327404944, −5.52457752889568522291791341764, −4.72826686179399511543001592120, −3.72600083861810348519052152335, −2.82727628237077085975365676158, −2.34852067084276385749236677723, −1.64386588921025527059791694418,
1.55626075593631418698067638373, 1.96861395291925751262698103846, 3.35928859827508056602516124980, 4.22445639357641663119973548974, 5.38620608056053054488089033824, 5.79685594964412561324847151107, 6.89762976894661481095198282728, 7.21356198534970528034432074353, 7.969545416473219135866105580918, 8.642301791507376077195996862089