L(s) = 1 | + (0.5 − 0.866i)3-s + (0.5 − 0.866i)4-s + 7-s + (−0.499 − 0.866i)9-s + (−0.499 − 0.866i)12-s + (−0.499 − 0.866i)16-s + (−1.5 + 0.866i)19-s + (0.5 − 0.866i)21-s + (0.5 − 0.866i)25-s − 0.999·27-s + (0.5 − 0.866i)28-s − 0.999·36-s + (1.5 − 0.866i)37-s − 43-s − 0.999·48-s + 49-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)3-s + (0.5 − 0.866i)4-s + 7-s + (−0.499 − 0.866i)9-s + (−0.499 − 0.866i)12-s + (−0.499 − 0.866i)16-s + (−1.5 + 0.866i)19-s + (0.5 − 0.866i)21-s + (0.5 − 0.866i)25-s − 0.999·27-s + (0.5 − 0.866i)28-s − 0.999·36-s + (1.5 − 0.866i)37-s − 43-s − 0.999·48-s + 49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3549 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.301 + 0.953i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3549 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.301 + 0.953i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.787713112\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.787713112\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 - T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - 1.73iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.258345313121635897283444974163, −7.956596336802892185859258476163, −6.95075417051349831004792024554, −6.38289178660233816174991139505, −5.71184273714645165269111202039, −4.78435313950115788866885312619, −3.85003789344574746861109999485, −2.48642925924334335410721501670, −1.99002971842997088432551101453, −0.988385079620251236830817418952,
1.84470622892116988754578254410, 2.65549216054901037730773800983, 3.47547224503991014085091806831, 4.44098704077502661031754280930, 4.80937070239286446947957214667, 5.97051657210641814828685143893, 6.89935756452107476950234747110, 7.69223739874119623098489933960, 8.313887837299748150858049095623, 8.777046709203537479112421379895