L(s) = 1 | + 3-s + (0.5 + 0.866i)4-s + (−0.866 − 0.5i)7-s + 9-s + (0.5 + 0.866i)12-s + (−0.499 + 0.866i)16-s + i·19-s + (−0.866 − 0.5i)21-s + (0.5 − 0.866i)25-s + 27-s − 0.999i·28-s + (1.73 + i)31-s + (0.5 + 0.866i)36-s + (0.866 + 0.5i)37-s + (−0.5 + 0.866i)43-s + ⋯ |
L(s) = 1 | + 3-s + (0.5 + 0.866i)4-s + (−0.866 − 0.5i)7-s + 9-s + (0.5 + 0.866i)12-s + (−0.499 + 0.866i)16-s + i·19-s + (−0.866 − 0.5i)21-s + (0.5 − 0.866i)25-s + 27-s − 0.999i·28-s + (1.73 + i)31-s + (0.5 + 0.866i)36-s + (0.866 + 0.5i)37-s + (−0.5 + 0.866i)43-s + ⋯ |
Λ(s)=(=(3549s/2ΓC(s)L(s)(0.746−0.665i)Λ(1−s)
Λ(s)=(=(3549s/2ΓC(s)L(s)(0.746−0.665i)Λ(1−s)
Degree: |
2 |
Conductor: |
3549
= 3⋅7⋅132
|
Sign: |
0.746−0.665i
|
Analytic conductor: |
1.77118 |
Root analytic conductor: |
1.33085 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3549(1544,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3549, ( :0), 0.746−0.665i)
|
Particular Values
L(21) |
≈ |
1.935628531 |
L(21) |
≈ |
1.935628531 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 7 | 1+(0.866+0.5i)T |
| 13 | 1 |
good | 2 | 1+(−0.5−0.866i)T2 |
| 5 | 1+(−0.5+0.866i)T2 |
| 11 | 1+T2 |
| 17 | 1+(0.5−0.866i)T2 |
| 19 | 1−iT−T2 |
| 23 | 1+(0.5+0.866i)T2 |
| 29 | 1+(0.5−0.866i)T2 |
| 31 | 1+(−1.73−i)T+(0.5+0.866i)T2 |
| 37 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 41 | 1+(−0.5+0.866i)T2 |
| 43 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 47 | 1+(−0.5+0.866i)T2 |
| 53 | 1+(0.5+0.866i)T2 |
| 59 | 1+(−0.5+0.866i)T2 |
| 61 | 1+T+T2 |
| 67 | 1+2iT−T2 |
| 71 | 1+(−0.5−0.866i)T2 |
| 73 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 79 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 83 | 1+T2 |
| 89 | 1+(−0.5−0.866i)T2 |
| 97 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.644127809115248737171812593705, −8.059554450740223429182290489657, −7.53626654274057198144173082526, −6.59999241918681510899941237626, −6.30943569768828270496703856253, −4.68840220931324339090616997439, −4.01253049385655196568964563247, −3.14141736534737043264376439409, −2.73761401666886460397118467676, −1.47408669519642256485814320264,
1.10542088073475575595822420804, 2.42759083596634540983900877413, 2.78059953179233360832616056212, 3.90335818972712046814950259395, 4.87413102164184817888939734930, 5.73491589312268813654177033296, 6.59380962106653411126765481443, 7.04097011270165066588540874384, 7.943966334017700608655122584777, 8.838940976519122052088952844292