L(s) = 1 | + 3-s + (0.5 + 0.866i)4-s + (−0.866 − 0.5i)7-s + 9-s + (0.5 + 0.866i)12-s + (−0.499 + 0.866i)16-s + i·19-s + (−0.866 − 0.5i)21-s + (0.5 − 0.866i)25-s + 27-s − 0.999i·28-s + (1.73 + i)31-s + (0.5 + 0.866i)36-s + (0.866 + 0.5i)37-s + (−0.5 + 0.866i)43-s + ⋯ |
L(s) = 1 | + 3-s + (0.5 + 0.866i)4-s + (−0.866 − 0.5i)7-s + 9-s + (0.5 + 0.866i)12-s + (−0.499 + 0.866i)16-s + i·19-s + (−0.866 − 0.5i)21-s + (0.5 − 0.866i)25-s + 27-s − 0.999i·28-s + (1.73 + i)31-s + (0.5 + 0.866i)36-s + (0.866 + 0.5i)37-s + (−0.5 + 0.866i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3549 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.746 - 0.665i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3549 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.746 - 0.665i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.935628531\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.935628531\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 - iT - T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-1.73 - i)T + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 + 2iT - T^{2} \) |
| 71 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.644127809115248737171812593705, −8.059554450740223429182290489657, −7.53626654274057198144173082526, −6.59999241918681510899941237626, −6.30943569768828270496703856253, −4.68840220931324339090616997439, −4.01253049385655196568964563247, −3.14141736534737043264376439409, −2.73761401666886460397118467676, −1.47408669519642256485814320264,
1.10542088073475575595822420804, 2.42759083596634540983900877413, 2.78059953179233360832616056212, 3.90335818972712046814950259395, 4.87413102164184817888939734930, 5.73491589312268813654177033296, 6.59380962106653411126765481443, 7.04097011270165066588540874384, 7.943966334017700608655122584777, 8.838940976519122052088952844292