L(s) = 1 | + (0.0808 − 0.0106i)2-s + (0.442 + 0.896i)3-s + (−1.92 + 0.515i)4-s + (0.199 − 0.174i)5-s + (0.0453 + 0.0678i)6-s + (−2.58 − 0.554i)7-s + (−0.300 + 0.124i)8-s + (−0.608 + 0.793i)9-s + (0.0142 − 0.0162i)10-s + (−6.03 + 0.395i)11-s + (−1.31 − 1.49i)12-s + (−1.97 − 1.97i)13-s + (−0.215 − 0.0172i)14-s + (0.245 + 0.101i)15-s + (3.42 − 1.98i)16-s + (3.81 + 1.55i)17-s + ⋯ |
L(s) = 1 | + (0.0571 − 0.00752i)2-s + (0.255 + 0.517i)3-s + (−0.962 + 0.257i)4-s + (0.0891 − 0.0781i)5-s + (0.0184 + 0.0276i)6-s + (−0.977 − 0.209i)7-s + (−0.106 + 0.0440i)8-s + (−0.202 + 0.264i)9-s + (0.00450 − 0.00514i)10-s + (−1.81 + 0.119i)11-s + (−0.379 − 0.432i)12-s + (−0.547 − 0.547i)13-s + (−0.0574 − 0.00461i)14-s + (0.0632 + 0.0262i)15-s + (0.857 − 0.495i)16-s + (0.926 + 0.376i)17-s + ⋯ |
Λ(s)=(=(357s/2ΓC(s)L(s)(−0.990+0.139i)Λ(2−s)
Λ(s)=(=(357s/2ΓC(s+1/2)L(s)(−0.990+0.139i)Λ(1−s)
Degree: |
2 |
Conductor: |
357
= 3⋅7⋅17
|
Sign: |
−0.990+0.139i
|
Analytic conductor: |
2.85065 |
Root analytic conductor: |
1.68838 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ357(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 357, ( :1/2), −0.990+0.139i)
|
Particular Values
L(1) |
≈ |
0.0121955−0.174259i |
L(21) |
≈ |
0.0121955−0.174259i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.442−0.896i)T |
| 7 | 1+(2.58+0.554i)T |
| 17 | 1+(−3.81−1.55i)T |
good | 2 | 1+(−0.0808+0.0106i)T+(1.93−0.517i)T2 |
| 5 | 1+(−0.199+0.174i)T+(0.652−4.95i)T2 |
| 11 | 1+(6.03−0.395i)T+(10.9−1.43i)T2 |
| 13 | 1+(1.97+1.97i)T+13iT2 |
| 19 | 1+(−0.124−0.943i)T+(−18.3+4.91i)T2 |
| 23 | 1+(5.23+2.58i)T+(14.0+18.2i)T2 |
| 29 | 1+(0.808+4.06i)T+(−26.7+11.0i)T2 |
| 31 | 1+(6.53−3.22i)T+(18.8−24.5i)T2 |
| 37 | 1+(0.141−2.16i)T+(−36.6−4.82i)T2 |
| 41 | 1+(0.435−2.19i)T+(−37.8−15.6i)T2 |
| 43 | 1+(−4.25−10.2i)T+(−30.4+30.4i)T2 |
| 47 | 1+(−1.94+7.25i)T+(−40.7−23.5i)T2 |
| 53 | 1+(1.17+1.53i)T+(−13.7+51.1i)T2 |
| 59 | 1+(10.4+1.37i)T+(56.9+15.2i)T2 |
| 61 | 1+(−2.64−7.78i)T+(−48.3+37.1i)T2 |
| 67 | 1+(−2.89−1.67i)T+(33.5+58.0i)T2 |
| 71 | 1+(−4.95−3.31i)T+(27.1+65.5i)T2 |
| 73 | 1+(−3.65−1.24i)T+(57.9+44.4i)T2 |
| 79 | 1+(−7.03+14.2i)T+(−48.0−62.6i)T2 |
| 83 | 1+(−1.65+3.98i)T+(−58.6−58.6i)T2 |
| 89 | 1+(1.34+0.361i)T+(77.0+44.5i)T2 |
| 97 | 1+(14.5−2.89i)T+(89.6−37.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.24445372082496032668541313554, −10.60470159766498781701498514512, −10.01740005687417429403932874731, −9.385417096954071364845837351229, −8.138414291369994996349662761453, −7.59325829285405432117082834546, −5.80474355689114893062952419639, −5.04788925287027850131806559876, −3.78729225339925751646431417285, −2.82542338835172741213081271505,
0.10900903058998658621620641539, 2.42911959041092733543775235492, 3.69186013476904055465777594556, 5.19614105694680673109270951122, 5.93451495775572580556076371039, 7.32109366488140661305101676588, 8.115599684678223190815873101648, 9.263049232152314234574022663607, 9.869357113939168449094645343407, 10.78368411602991671182188130092