L(s) = 1 | + (0.559 − 0.0736i)2-s + (−0.442 − 0.896i)3-s + (−1.62 + 0.435i)4-s + (1.94 − 1.70i)5-s + (−0.313 − 0.469i)6-s + (2.53 − 0.746i)7-s + (−1.91 + 0.794i)8-s + (−0.608 + 0.793i)9-s + (0.962 − 1.09i)10-s + (0.958 − 0.0627i)11-s + (1.10 + 1.26i)12-s + (−3.77 − 3.77i)13-s + (1.36 − 0.604i)14-s + (−2.39 − 0.990i)15-s + (1.89 − 1.09i)16-s + (3.07 − 2.74i)17-s + ⋯ |
L(s) = 1 | + (0.395 − 0.0520i)2-s + (−0.255 − 0.517i)3-s + (−0.812 + 0.217i)4-s + (0.870 − 0.763i)5-s + (−0.127 − 0.191i)6-s + (0.959 − 0.282i)7-s + (−0.678 + 0.280i)8-s + (−0.202 + 0.264i)9-s + (0.304 − 0.347i)10-s + (0.288 − 0.0189i)11-s + (0.320 + 0.365i)12-s + (−1.04 − 1.04i)13-s + (0.364 − 0.161i)14-s + (−0.617 − 0.255i)15-s + (0.474 − 0.274i)16-s + (0.745 − 0.666i)17-s + ⋯ |
Λ(s)=(=(357s/2ΓC(s)L(s)(0.181+0.983i)Λ(2−s)
Λ(s)=(=(357s/2ΓC(s+1/2)L(s)(0.181+0.983i)Λ(1−s)
Degree: |
2 |
Conductor: |
357
= 3⋅7⋅17
|
Sign: |
0.181+0.983i
|
Analytic conductor: |
2.85065 |
Root analytic conductor: |
1.68838 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ357(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 357, ( :1/2), 0.181+0.983i)
|
Particular Values
L(1) |
≈ |
1.10729−0.921882i |
L(21) |
≈ |
1.10729−0.921882i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.442+0.896i)T |
| 7 | 1+(−2.53+0.746i)T |
| 17 | 1+(−3.07+2.74i)T |
good | 2 | 1+(−0.559+0.0736i)T+(1.93−0.517i)T2 |
| 5 | 1+(−1.94+1.70i)T+(0.652−4.95i)T2 |
| 11 | 1+(−0.958+0.0627i)T+(10.9−1.43i)T2 |
| 13 | 1+(3.77+3.77i)T+13iT2 |
| 19 | 1+(0.417+3.16i)T+(−18.3+4.91i)T2 |
| 23 | 1+(3.58+1.76i)T+(14.0+18.2i)T2 |
| 29 | 1+(−0.353−1.77i)T+(−26.7+11.0i)T2 |
| 31 | 1+(−9.23+4.55i)T+(18.8−24.5i)T2 |
| 37 | 1+(0.606−9.26i)T+(−36.6−4.82i)T2 |
| 41 | 1+(1.08−5.44i)T+(−37.8−15.6i)T2 |
| 43 | 1+(0.368+0.889i)T+(−30.4+30.4i)T2 |
| 47 | 1+(3.22−12.0i)T+(−40.7−23.5i)T2 |
| 53 | 1+(−0.111−0.145i)T+(−13.7+51.1i)T2 |
| 59 | 1+(11.5+1.52i)T+(56.9+15.2i)T2 |
| 61 | 1+(−3.35−9.88i)T+(−48.3+37.1i)T2 |
| 67 | 1+(−5.04−2.91i)T+(33.5+58.0i)T2 |
| 71 | 1+(3.65+2.44i)T+(27.1+65.5i)T2 |
| 73 | 1+(−9.25−3.14i)T+(57.9+44.4i)T2 |
| 79 | 1+(−6.43+13.0i)T+(−48.0−62.6i)T2 |
| 83 | 1+(6.07−14.6i)T+(−58.6−58.6i)T2 |
| 89 | 1+(−9.93−2.66i)T+(77.0+44.5i)T2 |
| 97 | 1+(−5.25+1.04i)T+(89.6−37.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.60857104225244900657931502432, −10.17289402493474488223940943242, −9.459470402731925844363295042295, −8.324045269913900486189297029993, −7.68932171743920569974096855866, −6.14547927587188771535406072842, −5.08415468591289071251532296971, −4.66486536470864084842367950088, −2.76253493598468979025076756122, −1.01014758083278968851419526848,
2.01588348733456223427438672156, 3.73906418882047566434573926080, 4.79490862287624218744694170600, 5.66509447209820807214450730586, 6.53834034088505474039715653807, 8.014080503632672113521244155285, 9.104387982551011987845305492287, 9.948382059863666150426342503709, 10.48350286034594897677555224012, 11.81370819426971325553161795270