Properties

Label 2-357-119.10-c1-0-22
Degree $2$
Conductor $357$
Sign $0.485 + 0.874i$
Analytic cond. $2.85065$
Root an. cond. $1.68838$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.17 − 0.286i)2-s + (−0.442 − 0.896i)3-s + (2.72 − 0.729i)4-s + (1.07 − 0.945i)5-s + (−1.21 − 1.82i)6-s + (0.241 − 2.63i)7-s + (1.65 − 0.686i)8-s + (−0.608 + 0.793i)9-s + (2.07 − 2.36i)10-s + (−4.77 + 0.312i)11-s + (−1.85 − 2.11i)12-s + (4.50 + 4.50i)13-s + (−0.230 − 5.80i)14-s + (−1.32 − 0.548i)15-s + (−1.47 + 0.849i)16-s + (4.08 + 0.569i)17-s + ⋯
L(s)  = 1  + (1.53 − 0.202i)2-s + (−0.255 − 0.517i)3-s + (1.36 − 0.364i)4-s + (0.482 − 0.422i)5-s + (−0.497 − 0.745i)6-s + (0.0911 − 0.995i)7-s + (0.585 − 0.242i)8-s + (−0.202 + 0.264i)9-s + (0.656 − 0.748i)10-s + (−1.43 + 0.0943i)11-s + (−0.536 − 0.611i)12-s + (1.24 + 1.24i)13-s + (−0.0615 − 1.55i)14-s + (−0.342 − 0.141i)15-s + (−0.367 + 0.212i)16-s + (0.990 + 0.138i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 357 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.485 + 0.874i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 357 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.485 + 0.874i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(357\)    =    \(3 \cdot 7 \cdot 17\)
Sign: $0.485 + 0.874i$
Analytic conductor: \(2.85065\)
Root analytic conductor: \(1.68838\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{357} (10, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 357,\ (\ :1/2),\ 0.485 + 0.874i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.43327 - 1.43129i\)
\(L(\frac12)\) \(\approx\) \(2.43327 - 1.43129i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.442 + 0.896i)T \)
7 \( 1 + (-0.241 + 2.63i)T \)
17 \( 1 + (-4.08 - 0.569i)T \)
good2 \( 1 + (-2.17 + 0.286i)T + (1.93 - 0.517i)T^{2} \)
5 \( 1 + (-1.07 + 0.945i)T + (0.652 - 4.95i)T^{2} \)
11 \( 1 + (4.77 - 0.312i)T + (10.9 - 1.43i)T^{2} \)
13 \( 1 + (-4.50 - 4.50i)T + 13iT^{2} \)
19 \( 1 + (0.367 + 2.79i)T + (-18.3 + 4.91i)T^{2} \)
23 \( 1 + (-1.14 - 0.563i)T + (14.0 + 18.2i)T^{2} \)
29 \( 1 + (-0.234 - 1.17i)T + (-26.7 + 11.0i)T^{2} \)
31 \( 1 + (-1.66 + 0.819i)T + (18.8 - 24.5i)T^{2} \)
37 \( 1 + (-0.312 + 4.76i)T + (-36.6 - 4.82i)T^{2} \)
41 \( 1 + (2.29 - 11.5i)T + (-37.8 - 15.6i)T^{2} \)
43 \( 1 + (-2.19 - 5.28i)T + (-30.4 + 30.4i)T^{2} \)
47 \( 1 + (-1.67 + 6.26i)T + (-40.7 - 23.5i)T^{2} \)
53 \( 1 + (1.55 + 2.02i)T + (-13.7 + 51.1i)T^{2} \)
59 \( 1 + (10.5 + 1.39i)T + (56.9 + 15.2i)T^{2} \)
61 \( 1 + (3.94 + 11.6i)T + (-48.3 + 37.1i)T^{2} \)
67 \( 1 + (-6.44 - 3.71i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 + (5.14 + 3.43i)T + (27.1 + 65.5i)T^{2} \)
73 \( 1 + (-1.15 - 0.391i)T + (57.9 + 44.4i)T^{2} \)
79 \( 1 + (7.56 - 15.3i)T + (-48.0 - 62.6i)T^{2} \)
83 \( 1 + (2.46 - 5.95i)T + (-58.6 - 58.6i)T^{2} \)
89 \( 1 + (8.90 + 2.38i)T + (77.0 + 44.5i)T^{2} \)
97 \( 1 + (-6.87 + 1.36i)T + (89.6 - 37.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.34790405407015850302004896708, −10.93829619270856144459701492620, −9.661189167891264672637876721681, −8.282977904086480427007762141056, −7.14334033590226109017546914959, −6.19065737470571533828261687409, −5.27470030394272585284851769418, −4.39485677389778013858927772862, −3.14304744763352530651151024428, −1.59894377841986514548915099017, 2.64605956219805954421296011702, 3.42523423202066914092145817897, 4.90528816056389194764517914427, 5.79981010581113487744293266483, 6.00286584435868646686613379094, 7.67541218233332381768427426570, 8.750172638196464669529319330837, 10.19973055803799502408752638088, 10.73094170953463970693257187243, 11.91545481809954320780700069707

Graph of the $Z$-function along the critical line