L(s) = 1 | + (2.17 − 0.286i)2-s + (−0.442 − 0.896i)3-s + (2.72 − 0.729i)4-s + (1.07 − 0.945i)5-s + (−1.21 − 1.82i)6-s + (0.241 − 2.63i)7-s + (1.65 − 0.686i)8-s + (−0.608 + 0.793i)9-s + (2.07 − 2.36i)10-s + (−4.77 + 0.312i)11-s + (−1.85 − 2.11i)12-s + (4.50 + 4.50i)13-s + (−0.230 − 5.80i)14-s + (−1.32 − 0.548i)15-s + (−1.47 + 0.849i)16-s + (4.08 + 0.569i)17-s + ⋯ |
L(s) = 1 | + (1.53 − 0.202i)2-s + (−0.255 − 0.517i)3-s + (1.36 − 0.364i)4-s + (0.482 − 0.422i)5-s + (−0.497 − 0.745i)6-s + (0.0911 − 0.995i)7-s + (0.585 − 0.242i)8-s + (−0.202 + 0.264i)9-s + (0.656 − 0.748i)10-s + (−1.43 + 0.0943i)11-s + (−0.536 − 0.611i)12-s + (1.24 + 1.24i)13-s + (−0.0615 − 1.55i)14-s + (−0.342 − 0.141i)15-s + (−0.367 + 0.212i)16-s + (0.990 + 0.138i)17-s + ⋯ |
Λ(s)=(=(357s/2ΓC(s)L(s)(0.485+0.874i)Λ(2−s)
Λ(s)=(=(357s/2ΓC(s+1/2)L(s)(0.485+0.874i)Λ(1−s)
Degree: |
2 |
Conductor: |
357
= 3⋅7⋅17
|
Sign: |
0.485+0.874i
|
Analytic conductor: |
2.85065 |
Root analytic conductor: |
1.68838 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ357(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 357, ( :1/2), 0.485+0.874i)
|
Particular Values
L(1) |
≈ |
2.43327−1.43129i |
L(21) |
≈ |
2.43327−1.43129i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.442+0.896i)T |
| 7 | 1+(−0.241+2.63i)T |
| 17 | 1+(−4.08−0.569i)T |
good | 2 | 1+(−2.17+0.286i)T+(1.93−0.517i)T2 |
| 5 | 1+(−1.07+0.945i)T+(0.652−4.95i)T2 |
| 11 | 1+(4.77−0.312i)T+(10.9−1.43i)T2 |
| 13 | 1+(−4.50−4.50i)T+13iT2 |
| 19 | 1+(0.367+2.79i)T+(−18.3+4.91i)T2 |
| 23 | 1+(−1.14−0.563i)T+(14.0+18.2i)T2 |
| 29 | 1+(−0.234−1.17i)T+(−26.7+11.0i)T2 |
| 31 | 1+(−1.66+0.819i)T+(18.8−24.5i)T2 |
| 37 | 1+(−0.312+4.76i)T+(−36.6−4.82i)T2 |
| 41 | 1+(2.29−11.5i)T+(−37.8−15.6i)T2 |
| 43 | 1+(−2.19−5.28i)T+(−30.4+30.4i)T2 |
| 47 | 1+(−1.67+6.26i)T+(−40.7−23.5i)T2 |
| 53 | 1+(1.55+2.02i)T+(−13.7+51.1i)T2 |
| 59 | 1+(10.5+1.39i)T+(56.9+15.2i)T2 |
| 61 | 1+(3.94+11.6i)T+(−48.3+37.1i)T2 |
| 67 | 1+(−6.44−3.71i)T+(33.5+58.0i)T2 |
| 71 | 1+(5.14+3.43i)T+(27.1+65.5i)T2 |
| 73 | 1+(−1.15−0.391i)T+(57.9+44.4i)T2 |
| 79 | 1+(7.56−15.3i)T+(−48.0−62.6i)T2 |
| 83 | 1+(2.46−5.95i)T+(−58.6−58.6i)T2 |
| 89 | 1+(8.90+2.38i)T+(77.0+44.5i)T2 |
| 97 | 1+(−6.87+1.36i)T+(89.6−37.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.34790405407015850302004896708, −10.93829619270856144459701492620, −9.661189167891264672637876721681, −8.282977904086480427007762141056, −7.14334033590226109017546914959, −6.19065737470571533828261687409, −5.27470030394272585284851769418, −4.39485677389778013858927772862, −3.14304744763352530651151024428, −1.59894377841986514548915099017,
2.64605956219805954421296011702, 3.42523423202066914092145817897, 4.90528816056389194764517914427, 5.79981010581113487744293266483, 6.00286584435868646686613379094, 7.67541218233332381768427426570, 8.750172638196464669529319330837, 10.19973055803799502408752638088, 10.73094170953463970693257187243, 11.91545481809954320780700069707