L(s) = 1 | − 2-s − 2.82·3-s − 4-s + 2.82·6-s + 3·8-s + 5.00·9-s + 2.82·12-s − 4.24·13-s − 16-s − 4.24·17-s − 5.00·18-s + 2.82·19-s − 4·23-s − 8.48·24-s + 4.24·26-s − 5.65·27-s − 5.65·31-s − 5·32-s + 4.24·34-s − 5.00·36-s − 6·37-s − 2.82·38-s + 12·39-s − 4.24·41-s + 4·46-s + 2.82·48-s + 12·51-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.63·3-s − 0.5·4-s + 1.15·6-s + 1.06·8-s + 1.66·9-s + 0.816·12-s − 1.17·13-s − 0.250·16-s − 1.02·17-s − 1.17·18-s + 0.648·19-s − 0.834·23-s − 1.73·24-s + 0.832·26-s − 1.08·27-s − 1.01·31-s − 0.883·32-s + 0.727·34-s − 0.833·36-s − 0.986·37-s − 0.458·38-s + 1.92·39-s − 0.662·41-s + 0.589·46-s + 0.408·48-s + 1.68·51-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2800594006\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2800594006\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + T + 2T^{2} \) |
| 3 | \( 1 + 2.82T + 3T^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 13 | \( 1 + 4.24T + 13T^{2} \) |
| 17 | \( 1 + 4.24T + 17T^{2} \) |
| 19 | \( 1 - 2.82T + 19T^{2} \) |
| 23 | \( 1 + 4T + 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + 5.65T + 31T^{2} \) |
| 37 | \( 1 + 6T + 37T^{2} \) |
| 41 | \( 1 + 4.24T + 41T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 - 8T + 53T^{2} \) |
| 59 | \( 1 + 8.48T + 59T^{2} \) |
| 61 | \( 1 + 9.89T + 61T^{2} \) |
| 67 | \( 1 - 12T + 67T^{2} \) |
| 71 | \( 1 - 12T + 71T^{2} \) |
| 73 | \( 1 - 12.7T + 73T^{2} \) |
| 79 | \( 1 - 12T + 79T^{2} \) |
| 83 | \( 1 - 8.48T + 83T^{2} \) |
| 89 | \( 1 - 4.24T + 89T^{2} \) |
| 97 | \( 1 - 4.24T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.765440959456143660606291540516, −9.168744921377228823570277248462, −8.032271773782449855297453316465, −7.21046475119151909998206313802, −6.48216499272556153360191672892, −5.31098673513379710543099264967, −4.91447632000599858110226606819, −3.88459950169202020847012376724, −1.92657474480101744243828534718, −0.46928745299023079776231010794,
0.46928745299023079776231010794, 1.92657474480101744243828534718, 3.88459950169202020847012376724, 4.91447632000599858110226606819, 5.31098673513379710543099264967, 6.48216499272556153360191672892, 7.21046475119151909998206313802, 8.032271773782449855297453316465, 9.168744921377228823570277248462, 9.765440959456143660606291540516