L(s) = 1 | − 2-s − 2.82·3-s − 4-s + 2.82·6-s + 3·8-s + 5.00·9-s + 2.82·12-s − 4.24·13-s − 16-s − 4.24·17-s − 5.00·18-s + 2.82·19-s − 4·23-s − 8.48·24-s + 4.24·26-s − 5.65·27-s − 5.65·31-s − 5·32-s + 4.24·34-s − 5.00·36-s − 6·37-s − 2.82·38-s + 12·39-s − 4.24·41-s + 4·46-s + 2.82·48-s + 12·51-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.63·3-s − 0.5·4-s + 1.15·6-s + 1.06·8-s + 1.66·9-s + 0.816·12-s − 1.17·13-s − 0.250·16-s − 1.02·17-s − 1.17·18-s + 0.648·19-s − 0.834·23-s − 1.73·24-s + 0.832·26-s − 1.08·27-s − 1.01·31-s − 0.883·32-s + 0.727·34-s − 0.833·36-s − 0.986·37-s − 0.458·38-s + 1.92·39-s − 0.662·41-s + 0.589·46-s + 0.408·48-s + 1.68·51-s + ⋯ |
Λ(s)=(=(1225s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1225s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.2800594006 |
L(21) |
≈ |
0.2800594006 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1 |
good | 2 | 1+T+2T2 |
| 3 | 1+2.82T+3T2 |
| 11 | 1+11T2 |
| 13 | 1+4.24T+13T2 |
| 17 | 1+4.24T+17T2 |
| 19 | 1−2.82T+19T2 |
| 23 | 1+4T+23T2 |
| 29 | 1+29T2 |
| 31 | 1+5.65T+31T2 |
| 37 | 1+6T+37T2 |
| 41 | 1+4.24T+41T2 |
| 43 | 1+43T2 |
| 47 | 1+47T2 |
| 53 | 1−8T+53T2 |
| 59 | 1+8.48T+59T2 |
| 61 | 1+9.89T+61T2 |
| 67 | 1−12T+67T2 |
| 71 | 1−12T+71T2 |
| 73 | 1−12.7T+73T2 |
| 79 | 1−12T+79T2 |
| 83 | 1−8.48T+83T2 |
| 89 | 1−4.24T+89T2 |
| 97 | 1−4.24T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.765440959456143660606291540516, −9.168744921377228823570277248462, −8.032271773782449855297453316465, −7.21046475119151909998206313802, −6.48216499272556153360191672892, −5.31098673513379710543099264967, −4.91447632000599858110226606819, −3.88459950169202020847012376724, −1.92657474480101744243828534718, −0.46928745299023079776231010794,
0.46928745299023079776231010794, 1.92657474480101744243828534718, 3.88459950169202020847012376724, 4.91447632000599858110226606819, 5.31098673513379710543099264967, 6.48216499272556153360191672892, 7.21046475119151909998206313802, 8.032271773782449855297453316465, 9.168744921377228823570277248462, 9.765440959456143660606291540516